Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Lau J. — Low Cost Flip Chip Technologies for DCA, WLCSP, and PBGA Assemblies
Lau J. — Low Cost Flip Chip Technologies for DCA, WLCSP, and PBGA Assemblies



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Low Cost Flip Chip Technologies for DCA, WLCSP, and PBGA Assemblies

Àâòîð: Lau J.

Àííîòàöèÿ:

One-stop, cutting-edge guide to flip chip technologies. Now you can turn to a single, all-encompassing reference for a practical understanding of the fast-developing field that's taking the electronics industry by storm. Low-Cost Flip Chip Technologies, by John H. Lau, brings you up to speed on the economic, design, materials, process,equipment, quality, manufacturing, and reliability issues related to low cost flip chip technologies. This eye-opening overview tells you what you need to know about applying flip chip technologies to direct chip attach(DCA), flip chip on board (FCOB), wafer level chip scale package (WLCSP), and plastic ball grid array (PBGA) package assemblies. You'll discover flip chip problem-solving methods, and learn how to choose a cost-effective design and reliable, high-yield manufacturing process for your interconnect systems as you explore...

*IC trends and packaging technology updates *Over 12 different wafer-bumping methods...more than 100 lead-free solder alloys *Sequential build up PCB with microvias and via-in-pad *How to select underfill materials *And much, much more!



ßçûê: en

Ðóáðèêà: Òåõíîëîãèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2000

Êîëè÷åñòâî ñòðàíèö: 602

Äîáàâëåíà â êàòàëîã: 28.04.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
$MicroSpring^{TM}$ contact On Silicon Technology (${MOST}^{TM}$)      344—347
${CO}_2$ lasers      123 128 130—132 142
${CYCLOTENE}^{TM}$      341
ACA      see "Anisotropic conductive adhesive"
Accelerated aging testing      178—179
ACF      see"Anisotropic conductive film"
Additive PCB processes      127
Air flow      303—304
ALIVH fabrication process      140 143
Alpha particle      89
Alumina      204
Amkor Technology Inc., wsCSP      331—332
Anam Semiconductor Inc., wsCSP      331—332
Anisotropic conductive adhesive (ACA)      13 157 173—180
Anistropic conductive film (ACF)      13
Anistropic conductive film (ACF), definition      157
Anistropic conductive film (ACF), FCOB, PCB design      163—164
Anistropic conductive film (ACF), FCOB, process      157—158 164—172
Anistropic conductive film (ACF), FCOB, wafers      158—163
Anistropic conductive film (ACF), thermal cycling test of FCOB assemblies with      170—172
ANSYS finite element code      267 330 372
Application-specific IC (ASIC)      4—6 12
Area-array solder-bumped flip chip technology      10 11 511—513
ASIC (Application-specific IC)      4—6 12
Attenuation      398 401—402
Au bumps      159—160
B-SAM image      562—563 565
Ball grid array (BGA)      12 95
Ball-limiting metallurgy (BLM)      44
Bardeen, John      1
BCB (benzocyclobutene)      204 339—341
Bell Laboratories      1
Benzocyclobutene (BCB)      204 339—341
BGA (Ball grid array)      12 95
Bipolar transistor      1
Bismaleimide triazine (BT)      186 556
Black oxide (multibond)      128
Blind vias      122 124
BLM (ball-limiting metallurgy)      44
Brattain, Walter      1
BT (bismaleimide triazine)      186 556
Buried Bump Interconnection Technology (${B^2}{it}^{TM}$)      143
Buried vias      122 124
C-SAM image      403 418 554 559 561—562 563 565
C4 flip chip assembly      382
C4 technology (controlled-collapse chip connection (C4) technology)      184
Cache memory      4—6
CAMALOT 1818 dispensing system      556
Capacitance measurement      505—506
Cascade Microtech microprobe      396
CBGA (ceramic ball grid array)      10
CCD (charge-coupled device)      9
Cellular phones, mass and size trends      10
Center of Microperipherics Research      174
Ceramic ball grid array (CBGA)      10
Ceramic pin grid array (CPGA)      10
CFD (computational fluid dynamic)      306—307 530—531 545
Charge-coupled device (CCD)      9
Charging system      58
Chemical (wet) etching      124 135—136
Chip scale package (CSP)      10 13 95
Chip size effect      277—285 304—306
CIESS (Copper Interconnect Equipment Set Solution)      7
Circuit tape manufacturing      332
CISC (Complex Instruction Set Computing)      5
CMOS (complementary metal-oxide-semiconductor)      2
Coefficient of thermal expansion (CTE)      568
Collection system      61
Complementary metal-oxide-semiconductor (CMOS)      2
Complex Instruction Set Computing (CISC)      5
Computational fluid dynamic (CFD)      306—307 530—531 545
Conductive adhesive bonded flex      223
Conductive adhesives      157
Conductive ink formation of vias      124 136—141
Conformal method      128
Continuous Stream Metal ${Jet}^{TM}$      58—61 64
Controlled impedance      398—401
Controlled-collapse chip connection (C4) technology      184
Convection resistance      309
Cooling power      486—489 493 498—499
Coplanar stripline traces      467—470
Copper conductor pads      6—7
Copper Interconnect Equipment Set Solution (CIESS)      7
CPGA (ceramic pin grid array) Crack growth      447
Crack tip opening displacement (CTOD)      265 435 439 442—446 447—450
Cracking, in sputtered metal on SBL      343
Creep analysis, time and temperature dependent      324
Creep curves      200—201
Creep shear strain      375
Creep strain energy density      326
Crosstalk      397 401—402
CSP (chip scale package)      10 13 95
CTE (coefficient of thermal expansion)      568
CTOD (crack tip opening displacement)      265 435 439 442—446 447—450
Cu bumps      160—161 169
Cu microvia-VIP      364—365
Curing conditions, of liquidlike underfills      227—232
Curing temperature      202
Damping      195
Data acquisition system (DAS)      423 462—463
DBR (distributed Bragg reflector)      356
DCA (direct chip attach)      10 184—186 317
Deflux process      517—518
Demand-mode ink-jet printing system      55—58 61
Die cracking      562—563
Die passivation      333
Die preparation process flow      515
Dielectrics      132—134
Differential scanning calorimeter (DSC)      100—103 116
Direct ${RIMM}^{ÒÌ}$, assembly of ${\mu}BGA$      403—414
Direct ${RIMM}^{ÒÌ}$, densities      389
Direct ${RIMM}^{ÒÌ}$, electrical measurement      396—402
Direct ${RIMM}^{ÒÌ}$, manufacturing and testing of      392—396
Direct ${RIMM}^{ÒÌ}$, PCB of      390—396
Direct chip attach (DCA)      10 184—186 317
Direct solder bump-forming process      68
Distance to neutral point (DNP)      383
Distributed Bragg reflector (DBR)      356
DMA (dynamic mechanical analysis)      100 104 105—109
DNP (distance to neutral point)      383
Dried PBGAs      423
Drop-on-Demand Metal ${Jet}^{TM}$      55—58 62
Dry-film technologies      134
DSC (differential scanning calorimeter)      100—103 116
DSC thermal scan curve      191—192 226—231
DYCOstrate      233
Dynamic mechanical analysis (DMA)      100 104 105—109
Dynamic random access memory (DRAM)      5 12 347
E3 solder bumps      185
Elastoplastic analysis      370—379
Electrical performance of Rambus modules      392
Electrical performance, Mitsubishi PC-BGA packages      527—528
Electrical performance, NuBGA package      493 494
Electrical resistance strain gauges      421
Electrical resistivity      116 118
Electronics packaging      9—11 467
Electroplating method      47—48 343
Electrostatic deflection system      60
Electrovert Omniflo      556
Environment control system      60
EPA (United States Environmental Protection Agency)      98
Etching techniques      124 135—136
Evaporation method      44-47
Excimer laser      130
Failure analysis of flip chip on low-cost substrates interfacial shear strength      566—571
Failure analysis of flip chip on low-cost substrates with imperfect underfills      554—563
Failure analysis of flip chip on low-cost substrates, benefits      553—554
Failure analysis, wsCSP      338
Failure modes, under shear testing      206—210
Fairchild Semiconductor      1
FC-BGA package      519—529 537—545
FCIP (flip chip in package)      267
FCOB (flip chip on board) with imperfect underfills, chip size effect (near the solder joints)      277—285
FCOB (flip chip on board), advantages      223
FCOB (flip chip on board), assemblies with ACA      173—180
FCOB (flip chip on board), assemblies with ACF, PCB design      163—164
FCOB (flip chip on board), assemblies with ACF, process      157—158 164—172
FCOB (flip chip on board), assemblies with ACF, wafers      158—163
FCOB (flip chip on board), assembly process      253—256
FCOB (flip chip on board), disadvantages      224
FCOB (flip chip on board), flow rate with underfulls      204—206
FCOB (flip chip on board), high-temperature solder bumps      184—186
FCOB (flip chip on board), low-temperature solder bumps      186—189
FCOB (flip chip on board), shear test with underfills      206—210
FCOB (flip chip on board), thermal management      see "Liquidlike underfills"
FCOB (flip chip on board), thermal management, air flow effects      303—304
FCOB (flip chip on board), thermal management, chip size effects      304—306
FCOB (flip chip on board), thermal management, heat paths      306—308
FCOB (flip chip on board), thermal management, heat sinks      310—312
FCOB (flip chip on board), thermal management, PCB construction      302—303
FCOB (flip chip on board), thermal management, power dissipation area      304—306
FCOB (flip chip on board), thermal management, SGS-Thompson test chip      301—302
FCOB (flip chip on board), thermal management, signal copper content in PCB      308—309
FCOB (flip chip on board), thermal management, solder bump population      308
FCOB (flip chip on board), thermal management, underfill materials      309—310
FCOB (flip chip on board), with imperfect underfills, development history      263—264
FCOB (flip chip on board), with imperfect underfills, effect of voids on solder joint reliability      291—297
FCOB (flip chip on board), with imperfect underfills, fracture mechanics in finite element analysis      265—267
FCOB (flip chip on board), with imperfect underfills, near the fillet areas      267—277
FCOB (flip chip on board), with imperfect underfills, PCB thickness effect (near the corner solder joints      285—290
FCOB (flip chip on board), with imperfect underfills, possible failure modes      254—265
Fein Focus x-ray imaging system      556
Filled microvia technology      223
Fillet areas      267—277
Film redistribution layer (FRL)      223
Filmlike no-flow underfills      251—256
Finite element analysis      265—267
Finite element modeling for NuBGA package      474—477 481 496
Finite element modeling of Rambus module      413—414
Finite element modeling of the FC-PBGA assembly      539—540
Finite element modeling of WLCSP assemblies      323—324
Flip chip in package (FCIP) configuration      267
Flip chip on board      see "FCOB"
Flip chip technology      see "Solder-bumped flip chips"
FLLD      141 see
Flow rate of FCOB with underfills      204—206
Fly-through solder jet printing method      58—61 65
FormFactor, ${MOST}^{TM}$      344—347
FormFactor, FCOB      345—346
Four-point bending tests      203
Fracture mechanics in finite element analysis      265—267
Fracture mechanics, popcorning of PBGA packages by, crack growth at the interface between solder mask and copper      447—451
Fracture mechanics, popcorning of PBGA packages by, crack growth in the middle of die attach      442—447
Fracture mechanics, popcorning of PBGA packages by, crack initiation due to thermal expansion mismatch      435—437
Fracture mechanics, popcorning of PBGA packages by, described      434—435
Fracture mechanics, popcorning of PBGA packages by, methods      438—440
Fracture mechanics, popcorning of PBGA packages by, results      440—442
Fracture mechanics, popcorning of PBGA packages by, thermal expansion mismatch and pressure      437—438
Fracture toughness      201—204
Fraunhofer-Institute Reliability and Microintegration      174
Fringe patterns      380—382
FRL (film redistribution layer)      223
Fujitsu Laminate with Laser via and Deposit (FLLD)      141
Garofalo-Arrhenius steady-state creep      324 375
Gas-microwave plasma (GMP)      135
Gauge element numbering      421
Gauge factor      419
Georgia Institute of Technology (GIT)      203
Global deformation of surface laminar layer      382—383
Global thermal expansion mismatch      490
GMP (gas-microwave plasma)      135
HDI (high density interconnect)      223
heat dissipation      482—485 494 499
Heat paths of solder-bumped FCOB      306—308
heat sinks      310—312
Heat spreader      488 490
High density interconnect (HDI)      223
High-speed circuits, design charts      146—153
High-temperature solder bumps      184—186
High-thermal-conductivity underfill      310
Hitachi Chemical Co., HITAVIA Type 1 and Type 3      142
HP network analyzer      396
Humidity storage test      180
Hyundai MicroElectronics Inc., microscopic moire interferometry      343
Hyundai MicroElectronics Inc., omega-CSP      339—341
Ibiden, double-sided four-layer buildup board      142
IBM at Yasu, Surface Laminar Circuit (SLC)      142
IBM Corporation, DCA technology      184
IBM Corporation, FC-PBGA package      529—537
IBM Corporation, SLC structure      380
IBM Corporation, Surface Laminar Circuit (SLC)      142
IBSS (interpenetrating polymer buildup structure system)      223
IC wafer for the 32-pin SRAM      364—365
ICS      see "Integrated circuits"
Impedance of trace      397
Inductance measurement      506—507
Ink-jet printing technology      55—58
Integrated circuits, development history      1—2
Integrated circuits, materials      174—175
Integrated circuits, trends      2—9 see
Intel, OLGA package technology      511—519
Interfacial fracture toughness      203 204 205
Interpenetrating polymer buildup structure system (IBSS)      223
Interstitial via holes (IVHs)      142
Isothermal fatigue data      114—115
Joint Electronics Devices Engineering Council (JEDEC) package specifications      452—453 554 556
Junction-to-board thermal performance      545
JVC, microvia production      142
Kilby, Jack      1
Known good die (KGD)      13
Lamination      166
Laser drilling technology, microvia market      144—145
Laser via fabrication      123
Laser-drilled microvias      126—132
LCD (liquid crystal display)      9
Lead-free solders for flip chip applications      116—118
Lead-free solders, determining melting temperature with a DSC      100—103
Lead-free solders, determining TCE with TMA      103—105
Lead-free solders, isothermal fatigue of      114—115
Lead-free solders, measuring moisture absorption with TGA      109—110
Lead-free solders, measuring storage modulus with DMA      105—109
Lead-free solders, microhardness of      118
Lead-free solders, physical and mechanical properties      100
Lead-free solders, steady-state creep of      110—114
Lead-free solders, thermal fatigue of      115—116
Lead-free solders, wetting behavior      118
Lead-free solders, worldwide efforts on      95—99
Linear variable differential transducer (LVDT)      104
Liquid crystal display (LCD)      9
Liquid technologies      134
Liquid-to-liquid temperature cycling      59
Liquidlike underfills, assembly process      237—240
Liquidlike underfills, curing conditions of      227—232
Liquidlike underfills, material properties      232—236
Liquidlike underfills, no-flow materials      224—227
Liquidlike underfills, nonlinear finite element analysis      241—246
Liquidlike underfills, recommendations      246—256
Liquidlike underfills, reliability testing      240—241
Load displacement response of solder-bumped FCOB assembly      568
Local deformation      383—385
Low-Alpha Lead Symposium      89
LVDT (linear variable differential transducer)      104
Matsushita, ALIVH fabrication process      140 143
MBGA (metal ball grid array)      10
MDSP (micro dynamic solder pump)      61
Mechanical shear testing      206
Melting temperature      100—103 116
Metal ball grid array (MBGA)      10
Metal mask technology      46
Metal sputtering      342—343
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå