Авторизация
Поиск по указателям
Lau J. — Low Cost Flip Chip Technologies for DCA, WLCSP, and PBGA Assemblies
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Low Cost Flip Chip Technologies for DCA, WLCSP, and PBGA Assemblies
Автор: Lau J.
Аннотация: One-stop, cutting-edge guide to flip chip technologies. Now you can turn to a single, all-encompassing reference for a practical understanding of the fast-developing field that's taking the electronics industry by storm. Low-Cost Flip Chip Technologies, by John H. Lau, brings you up to speed on the economic, design, materials, process,equipment, quality, manufacturing, and reliability issues related to low cost flip chip technologies. This eye-opening overview tells you what you need to know about applying flip chip technologies to direct chip attach(DCA), flip chip on board (FCOB), wafer level chip scale package (WLCSP), and plastic ball grid array (PBGA) package assemblies. You'll discover flip chip problem-solving methods, and learn how to choose a cost-effective design and reliable, high-yield manufacturing process for your interconnect systems as you explore...
*IC trends and packaging technology updates *Over 12 different wafer-bumping methods...more than 100 lead-free solder alloys *Sequential build up PCB with microvias and via-in-pad *How to select underfill materials *And much, much more!
Язык:
Рубрика: Технология /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 2000
Количество страниц: 602
Добавлена в каталог: 28.04.2014
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Thermal resistance of NuBGA 486 493 496—498 500 502—503
Thermal resistance of PCBs 309
Thermal resistance of underfill materials 310
Thermal resistance, effects of air flow on 303—304
Thermal resistance, effects of chip size on 304—305
Thermal resistance, effects of heat sinks on 310—312 313 314
Thermal resistance, FC-BGA package 535—536
Thermal simulation model 527
Thermal-Curing Resin (TCR) 127
Thermogravimetric analysis (TGA) 100 109—110
Thin quad flat pack (TQFP) 10
Thin small outline package (TSOP) 10 12
Thinner substrate 494—496
Three-element rectangular rosette 422
Through-the-hole vias 122
Time domain reflectometer (TDR) 392 466
Time domain transmission (TDT) 466
Time-dependent analysis 326 376—378
Time-dependent creep strain energy density 329
Time-dependent shear creep strain 328
Time-dependent shear stress 327
TMA (thermal mechanical analysis) 100 103—105
Tomographic acoustic microimaging (TAMI) 418 554 560—562
Toshiba, Buried Bump Interconnection Technology ( ) 143
TQFP (thin quad flat pack) 10
Transfer solder-bump forming process 68
TSOP (thin small outline package) 10 12
Two-sided assembly 408—410 456—462
UBM (under-bump metallurgy) 44 48—49 513
Ultraviolet (UV) light 356
Under-bump metallurgy (UBM) 44 48—49 513
Underfills, curing conditions of 191—193
Underfills, desirable features of 189—190
Underfills, effects on the deformations of SLC substrates 380—385
Underfills, handling and application of 190—191
Underfills, material properties, creep curves 200—201
Underfills, material properties, effects on thermal management of FCOB 309—310
Underfills, material properties, fracture toughness 201—204
Underfills, material properties, moisture content 196—197
Underfills, material properties, storage modulus 194—195
Underfills, material properties, stress-strain relations 199—200
Underfills, material properties, tangent delta and 195—196
Underfills, material properties, TCE values 193—194
Underfills, material properties, Young's modulus 197—198
Underfills, nonuniform and voids 561—562
Underfills, OLGA 518—519
Underfills, passivation and 568
Underfills, shear test of FCOB 206—210
United Microelectronics Corporation (UMC) 364
United States Environmental Protection Agency (USEPA) 98
UV (ultraviolet) light 356
UV-yttrium aluminum garnet (YAG) laser 123 128 130—132
Variously Interconnected Layers (VIL) 142
VCCT (virtual crack closure technique) 435 439 441 442 447—450
VDD (power) conductors 466—467
Via-in-Pad (VIP) 145—146 363 372
Vias see "Microvias"
Victor Company of Japan (JVC), Variously Interconnected Layers (VIL) 142
VIL (Variously Interconnected Layers) 142
VIP (via-in-pad) 145—146 363 372
Virtual crack closure technique (VCCT) 435 439 441 442 447—450
Von Mises stress distributions in corner solder joint in flip chip assembly 242 245—250 281 283
Von Mises stress distributions, microvia/VIP substrates and 373—375
Von Mises stress distributions, stress distribution in corner solder joint 326
VSS (ground) conductors 466—467
Wafer bumping with Au 159—160
Wafer bumping with Cu 160—161
Wafer bumping with Ni-Au 161—163
Wafer bumping with solderless materials 89
Wafer bumping with solders, development 43—44
Wafer bumping with solders, electroplating method 47—48
Wafer bumping with solders, evaporation method 44—47
Wafer bumping with solders, fly-through solder jet printing method 58—61
Wafer bumping with solders, microball mounting method 72—78
Wafer bumping with solders, micropunching method 61—67
Wafer bumping with solders, molten solder injection method 67—69
Wafer bumping with solders, solder bumps on AI pads without UBM 84—88
Wafer bumping with solders, solder bumps on PCB method 84
Wafer bumping with solders, solder jet printing method 55—58
Wafer bumping with solders, stencil printing method 50—55
Wafer bumping with solders, SuperSolder method 69—72 73 75
Wafer bumping with solders, Tacky method 78—84
Wafer bumping with solders, under-bump metallurgy 48—49
Wafer bumping, Mitsubishi's 63Sn-37Pb solder bumps 521—522
Wafer bumping, OLGA 513—514
Wafer mapping 332
Wafer on wafer (WOW) process 344 345
Wafer-level burn-in (WLBI) 16
Wafer-level chip scale package see "WLCSP"
Wafer-level packaging 13—16
Water-soluble flux 517—518
WAVE (Wide Area Vertical Expansion) technology 347—354
Wayne State University 197
Weibull life distribution 463
Wetting behavior 118
Wide Area Vertical Expansion (WAVE) technology 347—354
Wind tunnel experiments 478—490 500—504
Wire bonding chip (face-down) in PBGA packages, described 465—466
Wire bonding chip (face-down) in PBGA packages, new NuBGA package 508
Wire bonding chip (face-down) in PBGA packages, NuBGA design, concepts 466—470 474
Wire bonding chip (face-down) in PBGA packages, NuBGA design, examples 471—474
Wire bonding chip (face-down) in PBGA packages, NuBGA electrical performance 474—478 505—507
Wire bonding chip (face-down) in PBGA packages, NuBGA solder joint reliability 490—492 504
Wire bonding chip (face-down) in PBGA packages, NuBGA standard packages 493—494
Wire bonding chip (face-down) in PBGA packages, NuBGA thermal performance 478—490
Wire bonding chip (face-down) in PBGA packages, thinner substrate and nonuniform heat spreader, NuBGA 494—496
Wire bonding chip (face-up) in PBGA packages, experimental measurements of pop-corning 417—426
Wire bonding chip (face-up) in PBGA packages, PCB assembly with large PQFP directly on the opposite side, assembly flow chart 454—456
Wire bonding chip (face-up) in PBGA packages, PCB assembly with large PQFP directly on the opposite side, described 452
Wire bonding chip (face-up) in PBGA packages, PCB assembly with large PQFP directly on the opposite side, paste, printing, and pick and place 456
Wire bonding chip (face-up) in PBGA packages, PCB assembly with large PQFP directly on the opposite side, solder reflow 456
Wire bonding chip (face-up) in PBGA packages, PCB assembly with large PQFP directly on the opposite side, surface-mount components 452—454
Wire bonding chip (face-up) in PBGA packages, PCB assembly with large PQFP directly on the opposite side, test board 454
Wire bonding chip (face-up) in PBGA packages, PCB assembly with large PQFP directly on the opposite side, thermal cycling test and results 462—463
Wire bonding chip (face-up) in PBGA packages, PCB assembly with large PQFP directly on the opposite side, two-sided assembly results 456—462
Wire bonding chip (face-up) in PBGA packages, solder reflow of moisturized PBGAs 427—434
Wire bonding, assembly process 33—34
Wire bonding, compared to solder-bumped flip chips 28—33
Wire bonding, cost of materials 35—43
Wire bonding, described 27
Wire bonding, major equipment requirements 34—35
WLBI (wafer-level burn-in) 16
WLCSP (wafer-level chip scale package), EPS/APTOS, finite element modeling of assemblies 323—324
WLCSP (wafer-level chip scale package), EPS/APTOS, life prediction for corner solder joint 329—330
WLCSP (wafer-level chip scale package), EPS/APTOS, PCB assembly 322—323
WLCSP (wafer-level chip scale package), EPS/APTOS, redistribution and bumping 318—320
WLCSP (wafer-level chip scale package), EPS/APTOS, shear test on board 330
WLCSP (wafer-level chip scale package), EPS/APTOS, solder bump height 320—322
WLCSP (wafer-level chip scale package), EPS/APTOS, solder bump strength 322
WLCSP (wafer-level chip scale package), EPS/APTOS, thermal cycling on board 330
WLCSP (wafer-level chip scale package), EPS/APTOS, time/temperature-dependent creep analysis 324
WLCSP (wafer-level chip scale package), features 317—318
WLCSP (wafer-level chip scale package), FormFactor, 344—347
WLCSP (wafer-level chip scale package), FormFactor, FCOB 345—346
WLCSP (wafer-level chip scale package), omega-CSP, design 339—341
WLCSP (wafer-level chip scale package), Wafer Scale Chip Scale Package (wsCSP), board reliability tests 336—339
WLCSP (wafer-level chip scale package), Wafer Scale Chip Scale Package (wsCSP), design and assembly flow 332—333
WLCSP (wafer-level chip scale package), Wafer Scale Chip Scale Package (wsCSP), features 331—332
WLCSP (wafer-level chip scale package), Wafer Scale Chip Scale Package (wsCSP), package level reliability tests 333—336
WOW (wafer on wafer) process 344 345
X-ray imaging system 556
X-ray techniques 554
YAG (UV-yttrium aluminum garnet) laser 123 128 130—132
Young's modulus of die attach 435
Young's modulus, FCOB with no-flow underfills 224—225
Young's modulus, material properties 197—198 244
Young's modulus, microvia/VIP substrates and 373
Young's modulus, SLC and 382
Young's modulus, temperature-dependent 491
Реклама