Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics
Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Lie groups, Lie algebras, cohomology and some applications in physics

Авторы: Azcarraga J., Izquierdo J.

Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1995

Количество страниц: 474

Добавлена в каталог: 09.03.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Parallel transport      84
Parallelizable manifold      27—28 44 60
Parallelizable spheres      28
Particle in a magnetic field B      294
Particle-antiparticle conjugation matrix      71
Partition of unity      42
Period      46
Pfaffian      134
Physics and mathematics      125—126
Planck manifold      167
Poincare duality      44
Poincare group      4 191 193 195 287
Poincare polynomials      78
Poincare — Cartan form      283 297 308
Poincare's lemma      43—44
Poisson algebra      300
Poisson algebra, brackets      165 190 295
Poisson algebra, manifold      166
Polarizations      167
Polyakov — Wiegmann action      354
Pontrjagin classes      104 131—133
Potential form      43
Prequantization      167
Presymplectic manifold      173
Primitively harmonic form      53
Principal bundle      13—17
Principal bundle of linear frames      26 30 84 96
Principal bundle, homomorphism      29
Principal homomorphism (derivation)      222
Principal symbol of $\mathscr{D}$      140
Product of extensions      271
Product of forms      49
Product of G-kernels      270
Projectable forms      105
Projectable vector field      86
Projective representations      157
Projective spaces      17 20
Pseudo-differential operators      143
Pseudoextension      193
Pseudotensorial forms      91
Pull-back      9 33 35
Push-forward      9 33
Quantization form      165
Quantomorphism      167
Quantum Galilei group      191
Quantum lifting      167
Quantum manifold      165 167 190
Quasi-invariance      153 170 289—294 303—305 317
Quasi-invariance and non-trivial group cohomology      303
Quaternions      20—21
r-jet      24
Radical of a Lie algebra      243
Ray      154
Ray, operators      159
Ray, representation      157 160
Ray, representation, finite-dimensional      163
Reconstruction theorem      15
Reduced bundles      30 96
Reduced join      388
Relativity group      152
Riemannian connection      96
Riemannian manifold      96
Riemannian structure      30
Right action      3 6
Right-invariant vector field      10
Rigid transformations      334 360
Rotation group      68
Rotation group, adjoint representation      69
Rotation group, group law      68
Rotation group, invariant measure      70
Rotation group, Killing form      70
Safe groups or algebras      365
Schwinger terms      340 344 379 397
Schwinger terms and Kac — Moody algebra      410
Schwinger terms in D=2,4 dimensions      408—410 413—414
Schwinger terms, classes      398
Self-dual gauge fields      49 127
Self-duality condition, conformal invariance      127
Semidirect extension      222—223 237 275 287
Semisimple Lie algebra      63
Simplicial cohomology      46
Simplicial homology      46
Smashed product      388
Solvable groups      254
Solvable Lie algebra      243
Sphere groups $L^{n}G$      331
Spin complex      144—149
Spin complex, index      147—149 369
Spin connection      146
Spin structure      104 144
Spin(n)      144
Spinor bundle      144
Splitting extension      222
Splitting principle      115
Stable homotopy groups      74
Standard model      97 385
Star (Hodge) operator      47
Stiefel — Whitney classes      104 144
Stokes' theorem      42
String      313
Structure constants      5 11
Structure constants from the central extension two-cocycle      238 302
Structure group      13
SU(1, 1) principal bundle      20
Subbundle      30
Sugawara construction      351
Super Lie groups      70
Super-Poincare algebra      73 312
Super-Poincare algebra, group      225
Superalgebras      72
Superalgebras and extended objects      315—323
Superfields      73
Supermanifold      70
Supermembrane      313
Superspace      71 223
Superstring      313
Supersymmetric extended objects      313 315—324
Supersymmetry      71 224
Supersymmetry algebra      73
Supertranslation group      71 224
Symmetric multilineal forms on $\mathscr{G}$      80
Symmetry transformation of a dynamical system      285
Symmetry transformation, global vs. local      334
Symplectic, coboundary      176
Symplectic, cocycle on $\mathscr{G}$      177 178 241
Symplectic, cocycle on G      175 178 241
Symplectic, cohomology      173 175—179
Symplectic, diffeomorphisms      186 332
Symplectic, form      165
Symplectic, manifold      165
Symplectic, orbits      176 178
Symplectic, structure      179
Symplectic, transformation      165
Symplectomorphisms      186
Tangent, $T_{e}(G)$      6
Tangent, bundle      22
Tangent, mapping      6
Tangent, space      22
Tensor bundle      23
Tensor derivation      37
Tensor field      23 31—32
Tensor product bundle      23
Tensorial forms      91 94
Three-coboundary      268
Three-cocycles      186 189 245 261 264
Todd class      144
Topological charges      321
Topological extension      324
Topological index      138 142
Topological invariants      104
Topological quantization      290 412
Topological subgroup      16
Topological terms      289
Torsion      80
Total Chern class      112
Total Chern form      112
Total manifold      13
Total Pontrjagin class      133
Transgression formula      109 401
Transgression operator      109
Transition functions      15 21 25 89
Transition functions, cocycle condition      16 22 99
Transition functions, equivalent      16
Transitive action      4
Triangle equality      110
Trivial action      4
Trivial bundle      15—16 29
Triviality      27—31
Triviality of $\tau(M)$      23
Triviality of a principal bundle      15
Triviality of associated bundles      27 29 31
Trivializing section      207
Twisted complex      144 148—149
Twisted complex, de Rham      148
Twisted complex, spin      148 366 369
Two-coboundary      161
Two-cocycle condition      158
Ultralocality      323
Unimodular groups      58 60
van Est theorem      254
Variational principles      24 283
Vector bundle      22
Vector bundle morphism      29
Vector field      5 8 22 31
Vector field, fundamental      88
Vector field, incompressible      39
Vector field, invariant      9—10
Vector field, valued forms      59
Vector field, vertical      86
Vertical bundle automorphisms      30 362
Vertical subspace      85
Vertical vector field      86
Virasoro algebra      332 345—351 354
Volume form      39
Wavesection      125
Weil homomorphism      106 108
Weinberg — Salam standard model      97 385
Wess — Zumino condition      288—289 366 382
Wess — Zumino condition as one-cocycle      395
Wess — Zumino forms on a Lie group G      289 292 297
Wess — Zumino Lagrangian density      317
Wess — Zumino terms      289 292 309
Wess — Zumino terms and the supersymmetric extended objects      312 314—318
Wess — Zumino terms in D=2,4 dimensions      411 414 416
Wess — Zumino terms on $DiffS^{1}$      354
Wess — Zumino terms, topologically non-trivial      290 329
Wess — Zumino — Witten model      351 357
Weyl differential operators      147
Weyl fermionic fields      366 379
Weyl-Heisenberg group      163 180
Weyl-Heisenberg group, algebra      164 243
Whitehead's Lemma      243 334 343 349
Whitehead's Theorem      244
Whitney sum bundle      23
Wick rotation      367
Winding number      119 124 129 328 389 392
Witt algebra      345 354 357
Witten's global anomaly      365
Yang — Mills action      126
Yang — Mills action, euclidean      127
Yang — Mills fields      97 99
Yang — Mills instantons      126—131
Yang — Mills instantons, number      119 130 149
Yang — Mills instantons, size      129
Yang — Mills instantons, solutions      127—129
Yang — Mills orbit space      363
Yang — Mills potentials      90 361 372
Yang — Mills theories      250 366
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте