Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics
Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Lie groups, Lie algebras, cohomology and some applications in physics

Авторы: Azcarraga J., Izquierdo J.

Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1995

Количество страниц: 474

Добавлена в каталог: 09.03.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Forms, exact      43
Frame bundle      26 30 84 96
Fredholm operator      141 369
Free action      4
Free differential algebra      401 408
Free module      10
Freudenthal suspension theorem      76
Fujikawa method      366
Full quantum mechanical Poincare groups      279
Functional exterior derivative d      316 352
Functional vector fields      317 336 352
Fundamental vector field      88
G-kernel      204 264
G-kernel, third cohomology group      266
Galilean invariance      154
Galilei algebra      170 182
Galilei group      153 287
Galilei group, adjoint and coadjoint, representations      181 183
Galilei group, cohomology      155 168 261
Gamma matrices, Euclidean      145 367
Gamma matrices, Minkowskian      71 146 315
Gauge algebra bundle      27
Gauge algebra coboundary operator      376
Gauge algebra cohomology      374—377 401
Gauge anomalies      360—423
Gauge fixing equation      361
Gauge Functions      97
Gauge group      30 362
Gauge group bundle      27
Gauge group, coboundary operator      375
Gauge invariance principle      99 360
Gauge transformations      27 334 361 379
Gauge transformations, based      363
Gauge transformations, infinitesimal      27 97—98 373
Gauge transformations, large and small      130
Gauge-variant function      298
Gauss law constraints      396
Gauss — Bonnet theorem      136
Gauss' theorem      43
Gaussian cut-off      369 382
Gelfand — Fuks theorem      348
Gelfand — Fuks two-cocycle      349
Gell-Mann — Levy equations      339
General covariance      99
Generalized electrodynamics      125
Generating functional      361 379—380
Genus      45
Ghost number      251
Ghost parameters      249 308 378
Ghosts as Maurer — Cartan forms      252 379
Graded, commutation rules      72
Graded, derivation      35—36
Graded, Lie algebras      72 253
Graded, Lie groups      250
Graded, Poisson brackets      321
Grassmann manifolds      17
Grassmann variables      70 73 287 368
Gravity as a gauge theory      99
Gravity, two-dimensional      351 354
Green — Schwarz superstring action      314
Gribov ambiguity      361 365
Group coboundary operator      216 227—228 375
Group extension      199 201—213
Group extension, bundle description      207
Group extension, characterization      209—210
Group extension, construction      211—213 270—275
Group extension, equivalence      205
Group extension, G-kernel $(K,\sigma)$      204 264
Group extension, Galilei      169 300
Group extension, group law      211
Group extension, obstruction      264
Group extension, super-Poincare (N=2)      224—225
Group extension, supertranslations      223—224
Group extension, Weyl — Heisenberg      163
Group n-coboundaries      219
Group n-cocycles      219
Group(s), $DiffS^{1}$      332 345
Group(s), 'local'      335
Group(s), Betti numbers of      78—80
Group(s), conformal      354
Group(s), coordinate transformations      30
Group(s), DiffM      4 331
Group(s), dihedral      278
Group(s), Euclidean ($E_{2}$)      254
Group(s), exceptional      75 79
Group(s), Galilei      153 287
Group(s), gauge      30 362
Group(s), general Lie      332
Group(s), GL(n, R)      12
Group(s), homotopy groups of      73—75
Group(s), O(n)      74
Group(s), Poincare      4 191 193 195 287
Group(s), quaternionic      278
Group(s), rotation      68
Group(s), SO(2, 1)      194
Group(s), SO(3, R)      68
Group(s), SO(n, R)      74
Group(s), Sp(n)      74
Group(s), Spin(n)      144
Group(s), SU(2)      18 403
Group(s), SU(n)      75
Group(s), Super-Poincare      225
Group(s), supertranslations      71 223—224
Group(s), U(n)      74
Group(s), USp(2n)      74
Haar measure on a Lie group      57
Hamiltonian vector field      173
Harmonic forms      52
Harmonic forms on $S^{n}$      54
Harmonic oscillator algebra      243
Hausdorff manifold      2
Heat kernel regularization      369 382
Higher cohomology groups, meaning      279—280
Hodge (star) operator      47
Hodge decomposition theorem      53
Hodge — de Rham theory      52—54 137
Homogeneous space      4
Homology      46 80
Homotopy axiom for de Rham cohomology      45
Homotopy groups for spheres $S^{n}$      75
Homotopy groups for the classical compact groups      74
Homotopy groups for the exceptional groups      75
Homotopy sequence      76—77 364
Hopf bundle      100
Hopf fibrings      20 129
Hopf invariant      21
Hopf mapping      18
Horizontal lift      85—86
Horizontal subspace      85—86
Horizontal vectors      85
Immersion      30
Incompressible vector field      39
Index of the Dirac operator      147
Index, analytical      137 139 142
Index, theorems      137
Index, theorems, Atiyah — Singer      143
Index, theorems, de Rham complex      138
Index, theorems, spin complex      147—149 369
Index, topological      138 142
Infinite-dimensional Lie algebras      3 23 331—335
Infinite-dimensional Lie groups      3 331—335
Inner automorphisms      202
Instanton bundles      21 100 149
Integrable form      42
Integration of forms      41
Interior of a manifold      42
Interior product      36
Invariant connections      100
Invariant forms      54—58
Invariant forms on $DiffS^{1}$      352
Invariant forms on the extended Galilei group      169 172
Invariant forms on the rotation group      69
Invariant measure on triangular matrix groups      67
Invariant polynomial      105 247
Invariant symmetric tensors      385
Invariant vector fields      9—10
Invariant vector fields on GL(n, R)      12
Invariant vector fields on the extended Galilei group      169 172
Invariant vector fields on the rotation group      69
Invariant volume element $\mu$      47
Irreducible symmetric tensors on $\mathscr{G}$      248
Isometry      52
Jacobian determinant and anomalies      369 380
Jet bundles      282
Kac — Moody algebra      334 340—345 349 397
Killing equations      39
Killing tensor      63—65 245
Killing vector field      39
Kinematical groups, classification      291
Kirillov term $\mu$      111 179 181
Kronecker symbol $\epsilon$      32
kth homotopy group      73
Kuenneth formula      45
Lagrange bracket      166
Lagrange equations      284
Lagrangian form      283
Lagrangian form, quasi-invariant      290 317
Lande paradox      156
Laplace — de Rham operator      51
Laplacian      51
Laplacian and index theorems      139
Leading symbol of $\mathscr{D}$      140
Left action      3 5
Left-invariant form on a Lie group      55
Left-invariant vector field      9
Left/right translation      3
Leibniz's rule      35
Levi — Mal'cev theorem      243
Levi — Mal'cev theorem, splitting      290
Levy — Leblond theorem      299
Lie algebra      3 5—8
Lie algebra, cohomology      230—236
Lie algebra, cohomology, coboundary operator      231—232
Lie algebra, cohomology, vs. Lie group cohomology      238—239 253—262
Lie algebra, extensions      234
Lie algebra, extensions, equivalent      235
Lie algebra, n-coboundary      231
Lie algebra, n-cocycle      231
Lie derivative      37
Lie group      2—3
Lie group as a principal bundle      16
Lie's second theorem      11
Lie's third theorem      333
Line bundle      21 115
Liouville form      174 286
Liouville theorem      52
Little group      4
Local algebras      338
Local exponents      159 162 238
Local exponents of $I^{p}_{n}$      192
Local exponents of a semisimple group      191
Local factors      159—160
Local factors, equivalent      160
Local functionals      395
Local gauge group      97 331 334 335 362
Local triviality      13—15
Locally convex space      332
Locally Hamiltonian vector field      173 332
Long exact sequences      280
Loop algebra      334
Loop algebra, two-cocycle      341—343
Loop groups      331 334 341
Loop groups, generalized      331
Loop superspace      316
Lorentz group      275
Magnetic current k      121
Magnetic monopole      100 120—125
Magnetic monopole, Lagrangian      324—329
Magnetic monopole, quantization condition      125
Magnetic monopole, three-cocycle      189 261
Majorana spinors      71 223
Manifold      2
Manifold with boundary      42
Manifold, compact      44
Manifold, contractible      44
Manifold, cotangent      23
Manifold, Hausdorff      42
Manifold, orientable      30 39
Manifold, paracompact      42
Manifold, parallelizable      27—28 44 60
Manifold, Riemannian      96
Manifold, tangent      22
Manifold, universal covering      18
Massive superparticle      311—312 324
Mathematics and physics      125—126
Matter fields      25 95 97
Maurer — Cartan equations      58 252 352
Maxwell equations      120
Maxwell equations in D-dimensional space      125
Mechanics and cohomology      281 297—308
Metric tensor      32
Metricity condition      146
Minkowski space      287
Module of cross sections      22
Moduli space      131 151
Moebius strip      27
Moebius transformations      349
Momentum mapping      173
Multi-instantons      130
n-cochains on G      215
n-cocycles as differential forms      246
n-dimensional cochains on $\mathscr{G}$      231
n-extended superspace      224 311
Natural cross section      14—15
Naturalness      36—40
Newtonian mechanics      290—297 308
Newtonian mechanics, 'anomaly'      300 308
Nilpotent groups      254
Nilpotent groups, algebras      243
Noether charges      285 312
Noether charges, densities      319 338
Noether theorem for mechanics      285
Non-abelian anomaly      366 379—417
Non-abelian anomaly and D+2 index theorem      388
Non-abelian anomaly and second cohomology group      396
Non-abelian anomaly and topology      387—394
Non-abelian anomaly from the abelian anomaly      387
Non-abelian anomaly in D=2,4 dimensions      408—415
Non-abelian anomaly, local properties      394
Non-associative group      279
Non-associative systems      279
Non-commutative geometry      168
Non-trivial WZW terms and quantization      290 412
Normalized factors      209
Normalized section      209
Nth cohomology group of $\mathscr{G}$      232
Nth cohomology group of G      219
Null section      23
Octonions      20—21
One-parameter group of diffeomorphisms      38
One-parameter subgroup      62
Orbit space      363 393
Orbit space, non-trivial topology      364—365 388
Ordinary variational principle      284
Orientability      104
Orientable manifold      30 39
Oriented frames      30 96
Orthonormal frames      30 96
Palais' Theorem      7
Paracompact manifold      42
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте