Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Hsiung C.-C. — A first course in differential geometry
Hsiung C.-C. — A first course in differential geometry



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: A first course in differential geometry

Автор: Hsiung C.-C.

Аннотация:

The origins of differential geometry go back to the early days of the differential calculus, when one of the fundamental problems was the determination of the tangent to a curve. With the development of the calculus, additional geometric applications were obtained. The principal contributors in this early period were Leonhard Euler (1707- 1783), GaspardMonge(1746-1818), Joseph Louis Lagrange (1736-1813), and AugustinCauchy (1789-1857). A decisive step forward was taken by Karl FriedrichGauss (1777-1855) with his development of the intrinsic geometryon a surface. This idea of Gauss was generalized to n( > 3)-dimensional spaceby Bernhard Riemann (1826- 1866), thus giving rise to the geometry that bears his name. This book is designed to introduce differential geometry to beginning graduate students as well as advanced undergraduate students (this introduction in the latter case is important for remedying the weakness of geometry in the usual undergraduate curriculum). In the last couple of decades differential geometry, along with other branches of mathematics, has been highly developed. In this book we will study only the traditional topics, namely, curves and surfaces in a three-dimensional Euclidean space E3. Unlike most classical books on the subject, however, more attention is paid here to the relationships between local and global properties, as opposed to local properties only. Although we restrict our attention to curves and surfaces in E3, most global theorems for curves and surfaces in this book can be extended to either higher dimensional spaces or more general curves and surfaces or both. Moreover, geometric interpretations are given along with analytic expressions. This will enable students to make use of geometric intuition, which is a precious tool for studying geometry and related problems; such a tool is seldom encountered in other branches of mathematics.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1981

Количество страниц: 361

Добавлена в каталог: 17.02.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
subspace      3
Supremum      9
Surface, complete      see Complete surface
Surface, convex      see Convex surface
Surface, developable      208
Surface, equation of      183
Surface, genus of      256
Surface, minimal      see Minimal surface
Surface, Monge parametrization of      155
Surface, of constant Gaussian curvature      246—252
Surface, of constant Gaussian curvature, Hilbert’s theorem for      249
Surface, of constant Gaussian curvature, Liebmann’s theorem for      247
Surface, of constant Gaussian curvature, Minding's theorem for      246
Surface, of revolution      158 244
Surface, of revolution, axis of      158
Surface, of revolution, meridian of      158
Surface, of revolution, minimal      220
Surface, of revolution, of constant Gaussian curvature      251
Surface, of revolution, parallels of      158
Surface, of revolution, parametrization of      159
Surface, parametrization of      151
Surface, parametrization of, by lines of curvature      192
Surface, parametrized      167
Surface, ruled      see Ruled surface
Surface, saddle      223
Surface, screw      203
Surface, simple      155
Surface, star-shaped      279
Surface, star-shaped, of constant Gaussian curvature      280
Surface, star-shaped, of constant mean curvature      280
Surface, Weingarten      252
Surface, Weingarten, special      252
Symbols, Christoffel      210
Symbols, Riemann      213 214
Tangent, indicatrix      97 140
Tangent, line of curve      82
Tangent, plane      173 180
Tangent, space      30
Tangent, surface      216
Tangent, surface, local isometry of, to plane      216
Tangent, vector, to $E^3$      29
Tangent, vector, to curve      80
Tangent, vector, to surface      173
Tangential mapping      111 140
Tangents, theorem on turning      131
Taylor’s formulas      17
Third fundamental form      175 176
Tolium of Descartes      82
Topological product      4
Topological space      3
topology      3
Topology, relative      3
Torsion, geodesic      237—238
Torsion, geodesic, of asymptotic curves      240
Torsion, of curve      91 92 96
Torsion, radius of      91
Torsion, total      146
Torus      4 161
Torus, Gaussian curvature of      194
Torus, parametrization of      162 181
Total curvature of curve      139
Total curvature of curve, Fary — Milnor theorem on      145
Total curvature of curve, Fenchel’s theorem on      140
Total twist number of curve      100
Tractrix      195
Transformation, affine      52
Transformation, affine, isometric      56
Transformation, linear      see Linear transformation
Transformation, orthogonal      48
Translation      52 61
Trefoil      86
Triangle inequality      2
Triangle, geodesic      264
Triangulation      254—255
Trihedron, Gauss      176
Trihedron, right-handed rectangular      1
Triply orthogonal system      203—205
Triply orthogonal system, Dupin’s theorem for      204
Umbilical point      184 186 190
Unimodular affine group      54
Uniqueness theorem for curves      105
Unit vector      24
Upper bound      9
Variation, first, of area      219
Variation, first, of length      300
Variation, of vector field      257
Variation, second, of length      302
Variations, calculus of      75
Variations, normal, of surfaces      218
Vector      23
Vector field, normal, on $E^3$      30
Vector field, normal, on curve      85
Vector field, normal, on surface      264
Vector field, normal, on surface, index of      264—267
Vector field, normal, on surface, normal      243 245
Vector field, normal, on surface, singular point of      264
Vector field, normal, tangent      173
Vector, Curl of      73
Vector, divergence of      73
Vector, mean curvature      222
Vector, product      25
Vector, space      24
Vector, tangent, to curve      80
Vector, unit      24
Vector, velocity      80
Vertex, of plane curve      see Curve vertex
Vertices of piecewise regular curve      82
Wedge multiplication      67
Weingarten formulas      207
Wemgarten surface, special      252
Weyl’s problem      285
Weyl’s problem, uniqueness theorem for      275 286
Width of closed curve, constant      113 114 138
Width of closed curve, in direction      113
Winding number      111 136
Wirtinger’s lemma      121
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте