Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Hsiung C.-C. — A first course in differential geometry
Hsiung C.-C. — A first course in differential geometry



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: A first course in differential geometry

Автор: Hsiung C.-C.

Аннотация:

The origins of differential geometry go back to the early days of the differential calculus, when one of the fundamental problems was the determination of the tangent to a curve. With the development of the calculus, additional geometric applications were obtained. The principal contributors in this early period were Leonhard Euler (1707- 1783), GaspardMonge(1746-1818), Joseph Louis Lagrange (1736-1813), and AugustinCauchy (1789-1857). A decisive step forward was taken by Karl FriedrichGauss (1777-1855) with his development of the intrinsic geometryon a surface. This idea of Gauss was generalized to n( > 3)-dimensional spaceby Bernhard Riemann (1826- 1866), thus giving rise to the geometry that bears his name. This book is designed to introduce differential geometry to beginning graduate students as well as advanced undergraduate students (this introduction in the latter case is important for remedying the weakness of geometry in the usual undergraduate curriculum). In the last couple of decades differential geometry, along with other branches of mathematics, has been highly developed. In this book we will study only the traditional topics, namely, curves and surfaces in a three-dimensional Euclidean space E3. Unlike most classical books on the subject, however, more attention is paid here to the relationships between local and global properties, as opposed to local properties only. Although we restrict our attention to curves and surfaces in E3, most global theorems for curves and surfaces in this book can be extended to either higher dimensional spaces or more general curves and surfaces or both. Moreover, geometric interpretations are given along with analytic expressions. This will enable students to make use of geometric intuition, which is a precious tool for studying geometry and related problems; such a tool is seldom encountered in other branches of mathematics.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1981

Количество страниц: 361

Добавлена в каталог: 17.02.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Group, general linear      47
Group, of isometrics      56
Group, orthogonal      48
Hausdorff space      11
Height function      145
Heine — Borel theorem      11 132
Helicoid      181
Helicoid, as ruled minimal surface      223
Helix      79 87 96
Helix, axis of      79
Helix, circular      95 104
Helix, cylindrical      97 107
Helix, pitch of      79
Hilbert’s Theorem      249
Homeomorphic spaces      6
Homeomorphism      6
Homotopy of curves      169
Hopf — Rinow’s theorem      295
Hopf — Voss symmetry theorem      284
Hopf — Voss translation theorem      280
Hypcrbolic paraboloid      169 223
Hyperboloid, of one sheet      223
Hyperboloid, ot two sheets      157 244
Identity, Lagrange      26
Index, of vector field      264—267
Index, rotation      111 131 134 135 136
Indicatrix, binormal      97
Indicatrix, principal normal      262 263
Indicatrix, tangent      97 140
Inequality, isoperimetric      118
Infimum      9
Inner product      24 31
Integrability condition      212 269
Interior point      3
Interior, of closed plane curve      110
Interior, of set      3
Intermediate value theorem of Bolzano      14
Intrinsic property      226
Inverse function theorem      44
inversion      203
Involute      98 138
Isometric affine transformation      56
Isometry, local      198 246
Isometry, of $E^3$      54
Isometry, of surfaces      197
Isometry, orientation-preserving      61 105 127
Isometry, orientation-reversing      61
Isoperimetric inequality      118
Isothermal coordinate system      200 222
Jacobi equation      302
Jacobi theorem      263
Jacobian matrix      42
JoachimstahVs theorem      196
Jordan curve theorem      110
Kernel      36
Knot      86
Knot, cloverleaf      86
Knot, figure-eight      86
Knot, four      86
Knot, Listing’s      86
Knot, overhand      86
Knot, polygonal      87
Knot, tame      87
Knot, trivial      86
Knot, wild      87
Kronecker delta      31
Lagrange identity      26
Lagrange multiplier      21
Least upper bound      9
Left-handed oriented frame field      60 85
Length, of curve      see Arc length
Length, of vector      24
Levi — Civita parallelism      225
Levi — Civita parallelism, property of      227
Liebmann's Theorem      247
Limit point      5
linear combination      27
Linear dependence      28
Linear independence      27
Linear space      24
Linear transformation      36 47
Linear transformation, kernel of      36
Linear transformation, nonsingular      47
Linear transformation, nullity of      38
Linear transformation, rank of      38
Liouville’s theorem      206
Local canonical form of curve      100
Lower bound      9
M$\ddot{o}$bius band      163
M$\ddot{o}$bius band, nonorientability of      244
M$\ddot{o}$bius band, parametrization of      164
Maclaunn’s formula      18 100
Mamardi — Codazzt equations      212
Mannheim curve      98
Mapping, antipodal      246
Mapping, area-preserving      202
Mapping, conformal      198
Mapping, continuous      6
Mapping, derivative      41
Mapping, differential      41
Mapping, Gauss      176
Mapping, of class $C^k$      35
Mapping, position      111
Mapping, principal normal      262
Mapping, regular      43
Mapping, tangential      111
Matrix, Jacobian      42
Matrix, orthogonal      48
Maximum, absolute      13 20
Maximum, relative (local)      18 20
Mean curvature      189 196 270
Mean curvature, vector      222
Mean value theorem, of differential calculus      15
Mean value theorem, of integral calculus, first      15
Mean value theorem, of integral calculus, generalized first      16
Mean value theorem, of integral calculus, second      16
Measure of set of lines      126
Mercator projection      201
Mercator projection, stereographic      169 200
Meridian, of sphere      154
Meridian, of surface of revolution      158
Meusnier’s theorem      177
Minding's theorem      246
Minimal surface      217
Minimal surface, as solution to variational problem      217
Minimal surface, Enneper’s      223
Minimal surface, of revolution      220
Minimal surface, ruled      223
Minimal surface, Scherk’s      223
Minimal surface, with isothermal parameters      223
Minimum, absolute      13 20
Minimum, relative (local)      18 20
Minkowski’s formulas      277 279
Minkowski’s problem      285
Minkowski’s problem, uniqueness theorem for      286
Monge parametrization      155
Motion, improper      61
Motion, proper      61
Motion, rigid      54
Multiplication wedge      67
Multiplication, exterior      67
Natural basis      28
Natural coordinate functions      2
Natural frame field on $E^3$      30
Negatively oriented frame      60 85
Neighborhood      2
Neighborhood, open spherical      2
Norm of vector      24
Normal coordinates      234
Normal coordinates, first fundamental form in      236
Normal curvature      177 183 184
Normal line to curve      91
Normal plane to curve      91
Normal principal      91
Normal section      177 185
Normal vector field      243 245
Normal vector to surface      174 180
Nullity      38
Open covering      11
Open set      4
Opposite points      137
Orientable surface      242—243
Orientation, of frame      59
Orientation, of surface      241—245
Orientation-preserving (-reversing) isometry      61 105 127
Oriented curve      89
Orthogonal matrix      48
Orthogonal system of surfaces      203
Orthogonal trajectory      99
Orthogonal transformation      48
Orthonormal basis      28
Osculant of curve      101
Osculating circle      103
Osculating plane      91 101—102 104
Osculating sphere      103
Overdetermined system      225
Paraboloid      294 306
Parallel curves      99 116
Parallel curves, Steiner’s formulas for      116
Parallel translate      226
Parallel translate, existence and uniqueness of      226
Parallel translate, geometric interpretation of      227
Parallel vector field along a curve      225
Parallel vector field along a curve, differential equalions for      226
Parallel vector field along a curve, path-independence of      228
Parallelism, Levi — Civita      225
Parallels, geodesic      232
Parallels, of colatitude      154
Parameter of curve      78
Parameters, change of, for surfaces      165
Parameters, isothermal      200
Parametric representation of plane curve      115
Parametrization of surface      151
Parametrization of surface, isothermal      200 222
Parseval's formulas      122
Period      19 86 88
Periodic function      19
Piecewise regular (smooth) curve      82
Plane, first fundamental form of      178
Plane, normal      91
Plane, osculating      see Osculating plane
Plane, rectifying      91
Plane, tangent      173 180
Plateau’s problem      237
Poincare half-plane      226 250—251
Poincare theorems      70 265
Point, accumulation      5
Point, antipodal      303
Point, conjugate      302—305
Point, critical      19 180
Point, elliptic      182 185 186
Point, hyperbolic      182 185 186
Point, limit      5
Point, of application      29
Point, parabolic      182 185 186
Point, planar      183 186
Point, saddle      19
Point, umbilical      184 186 190
Polar tangential coordinates      115
Position, mapping      111
Position, vector      24
Positively oriented, boundary of simple region      254
Positively oriented, frame      60 85
Positively oriented, simple closed curve      110
Positively oriented, tangent      110
Principal, curvature      184 189
Principal, direction      184 189
Principal, normal      91
Product, inner      24 31
Product, scalar      24
Product, vector      25
Projection, Mercator      201
Projection, stereographic      169 200
Pseudosphere      195
Quadratic form      21
Radius, of curvature      91
Radius, of torsion      91
Rank of linear transformation      38
Rectifiable curve      83
Rectifying plane      91
Reflection      49 61
Region, regular      253
Region, simple      254 260
Regular curve      82
Regular mapping      43
Regular value of function      155 244
Relative topology      3
Reparametrization of curve      80—81 83
Reparametrization of curve, by arc length      84
Reparametrization of curve, orientation-preserving (-reversing)      84
Riemann symbols      213 214
Right-handed oriented frame      60 85
Rigid affine transformation      56
Rigid motion      54
Rigidity of sphere      249
Rodriques, equation of      192
Rotation index      111 131 134 135 136
Rotation, of $E^2$      49 61
Ruled surface      214
Ruled surface, directrix of      214
Ruled surface, ruling of      214
Saddle point      19
Saddle surface      223
Scalar product      24
Schur’s theorem for curves      147
Screw surface      203
Second fundamental form      175 177 269
Second fundamental form, coefficients of      178
Second variation of length      302
Section, normal      177 185
Sectionally regular (smooth) curve      82
See also Positively oriented Orthogonal grou      48
Sequence, Cauchy      10
Sequence, convergent      10
Sequence, divergent      10
Set, bounded      9
Set, closed      4
Set, empty      4
Set, open      4
Sign of isometry      60
Simple curve      85
Simple region      254 260
Simple surface      155
Singular point of curve      82
Space, compact      11
Space, connected      7
Space, disconnected      7
Space, Hausdorff      11
Space, linear      24
Spaces, homeomorphic      6
Sphere, first fundamental form of      179
Sphere, meridian of      154
Sphere, parametrizations of      152—155 169
Stationary integral      75
Steiner’s formulas for parallel curves      116
Stereographic projection      169 200
Straight line      78 92
Straight line, length-minimizing property of      87
Structural equations for forms      75 269
Subcovering      11
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте