Авторизация
Поиск по указателям
Frankel T. — The geometry of physics: an introduction
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: The geometry of physics: an introduction
Автор: Frankel T.
Аннотация: This book is intended to provide a working knowledge of those parts of exterior differential forms, differential geometry, algebraic and differential topology, Lie groups, vector bundles and Chern forms that are essential for a deeper understanding of both classical and modern physics and engineering. Included are discussions of analytical and fluid dynamics, electromagnetism, thermodynamics, the deformation tensors of elasticity, soap films, special and general relativity, the Dirac operator and spinors, and gauge fields, including Yang-Mills, the Aharonov-Bohm effect, Berry phase, and instanton winding numbers. Before discussing abstract notions of differential geometry, geometric intuition is developed through a rather extensive introduction to the study of surfaces in ordinary space; consequently, the book should also be of interest to mathematics students. This book will be useful to graduate and advanced undergraduate students of physics, engineering and mathematics. It can be used as a course text or for self study.
Язык:
Рубрика: Физика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 2001
Количество страниц: 688
Добавлена в каталог: 15.12.2013
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Space-time notation 141
Spacelike 193
Spatial metric 298
Spatial slice 316
Special 392
Special, linear group, Sl(n) 11 392
Special, orthogonal group SO(n) 392
Special, unitary group SU(n) 392
Sphere lifting theorem 605
Spin structure 515—518
Spinor, "representation" of SO(3) 497
Spinor, "representation" of the Lorentz group 509
Spinor, 2-component 497
Spinor, 2-component, left- and right-handed 513
Spinor, adjoint 532
Spinor, bundle 517
Spinor, connection 518—521
Spinor, cospinor 513
Spinor, Dirac or 4-component 513
Spinor, group Spin(3) 497
Stability 324
Stability, 2-component, subgroup 457
Stiefel manifold 459 616
Stiefel vector field 426
Stokes's theorem 111—114
Stokes's theorem for pseudoforms 117
Stokes's theorem, generalized 155
Stored energy of deformation 623—626
Stress forms, Cauchy 618
Stress forms, Cauchy, symmetry 620
Stress forms, first Piola — Kirchhoff 622
Stress forms, second Piola — Kirchhoff 623
Stress tensor 295 617
Stress-energy-momentum tensor 295
Structure constants 402
Structure constants in a bi-invariant metric 566
Structure group of a bundle 433 452
Structure group of a bundle, reduction 433
SU(N) 392 493—497
Subalgebra 411
Subgroup 411
Subgroup, isotropy = little = stability 457
Submanifold 26
Submanifold of 29
Submanifold of 4 8
Submanifold with transverse orientation 115
Submanifold, 1- and 2-sided 84
Submanifold, embedded 27
Submanifold, framed 115
Submanifold, immersed 169
Submersion 181
Summation convention 59
Support 107
Symmetries 527—531
Symplectic form 146
Symplectic manifold 146
Synge's formula 325
Synge's theorem 329
Tangent bundle 48
Tangent bundle, unit 51
Tangent space 7 25
Tangent vector 23
Tellegen's theorem 646
Tensor, analysis 298—303
Tensor, Cauchy — Green 82
Tensor, contravariant 59
Tensor, covariant 58
Tensor, deformation 82 625
Tensor, metric 58
Tensor, mixed 60
Tensor, mixed, linear transformation 61
Tensor, product 59 66
Tensor, product, representation 482
Tensor, rate of deformation 632
Tensor, transformation law 62
Tensor, two-point 622
Theorema egregium 231
Thermodynamics, first law 180
Thermodynamics, second law according to Caratheodory 181
Thermodynamics, second law according to Lord Kelvin 181
Thom's theorem 349
Timelike 193
Topological invariants 346
Topological quantization 468
Topological space 12
Topological space, compact 13
topology 12
Topology, induced or subspace 12
Torsion of a connection 245
Torsion of a connection, 2-form 249
Torsion of a space curve 196
Torus 16
Torus, maximal 393
Transformation group 456
Transition matrix 24 254 414
Transition matrix for dual bundles 417
Transition matrix for tangent bundle 417
Transition matrix for tensor product bundle 417
Transition matrix for the cotangent bundle 417
Transitive 456
Translation (left and right) 393
Transversal to a submanifold 34
Transverse orientation 115
Triangulation 346
Tunneling 558
Twisted product 415
Unitary group U(n) 392
Universe, static 292
Universe, stationary 291
Vacuum state 557 558
Vacuum state, tunneling 558
Variation of a map 153
Variation of action 154
Variation of Ricci tensor 306
Variation, external 523
Variation, first, of arc length 232
Variation, first, of area 221 322
Variation, internal 523
Variation, second, of arc length 324—332
Variational derivative 307 526
Variational equation 128
Variational principles of mechanics 275—281
Variational vector 128 153 272
Vector as differential operator 25
Vector, analysis 92 136—138
Vector, bundle 413—419
Vector, bundle-valued form 488
Vector, contravariant or tangent 23
Vector, coordinate 25
Vector, covariant = covector = 1-form 41
Vector, field 25
Vector, field, along a submanifold 269
Vector, field, flow (1-parameter group) generated by 32 33
Vector, field, integral curve of 31
Реклама