Авторизация
Поиск по указателям
Frankel T. — The geometry of physics: an introduction
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: The geometry of physics: an introduction
Автор: Frankel T.
Аннотация: This book is intended to provide a working knowledge of those parts of exterior differential forms, differential geometry, algebraic and differential topology, Lie groups, vector bundles and Chern forms that are essential for a deeper understanding of both classical and modern physics and engineering. Included are discussions of analytical and fluid dynamics, electromagnetism, thermodynamics, the deformation tensors of elasticity, soap films, special and general relativity, the Dirac operator and spinors, and gauge fields, including Yang-Mills, the Aharonov-Bohm effect, Berry phase, and instanton winding numbers. Before discussing abstract notions of differential geometry, geometric intuition is developed through a rather extensive introduction to the study of surfaces in ordinary space; consequently, the book should also be of interest to mathematics students. This book will be useful to graduate and advanced undergraduate students of physics, engineering and mathematics. It can be used as a course text or for self study.
Язык:
Рубрика: Физика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 2001
Количество страниц: 688
Добавлена в каталог: 15.12.2013
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Killing field, equation 529
Kinetic term 535
Kirchhoff's current law (KCL) 644
Kirchhoff's voltage law (KVL) 644
Klein bottle 348
Klein — Gordon equation 502
Kronecker delta, generalized 67
Kronecker index of a vector field 216
Lagrange bracket { , } 80 100
Lagrange deformation tensor 82 625
Lagrange's equations 147
Lagrange's equations in a curved 276
Lagrange's equations with electromagnetism 439
Lagrange's equations, tensorial nature 526
Lagrangian 54
Lagrangian for particle in an electromagnetic field 436—439
Lagrangian, Dirac 531
Lagrangian, electromagnetic 308
Lagrangian, significance in special relativity 437
Lambert's formula 290
Laplace operator on forms 368—372
Laplace operator on forms on a 1-form 370
Laplace operator on a cochain 641
Laplace's formula for pressure in a bubble 227
Laplacian 93 305
Laplacian and mean curvature 305
Leaf of a foliation 173
Leaf of a foliation, maximal 173
Levi-Civita connection 242
Levi-Civita equation 297
Levi-Civita parallel displacement 237
Lie algebra g 402
Lie algebra g, Ad invariant scalar product 543
Lie bracket [ , ] 126 402
Lie derivative of a form 132—138
Lie derivative of a vector field 125
Lie derivative of the metric tensor 625
Lie derivative of the stress form 634 635
Lie group 391—412
Lie group, 1-parameter subgroup 398 405—407 564
Lie group, 1-parameter subgroup on Sl(2, ) 407
Lie group, compact 541
Lie group, compact, averaging over 541
Lie group, compact, bi-invariant forms 561—567
Lie group, connection and curvature of 580
Lie subgroup and subalgebra 410—412
Lifting paths 277
Lifting paths in a bundle 593
Lifting paths in a covering space 574
Lifting spheres 605
Light cone 193
Lightlike 193
Linear functional 38
Linking number 219
Liouville's theorem 148
Local product 49
Local trivialization 417
Lorentz factor 193
Lorentz force 119
Lorentz force, covector 120 197
Lorentz group 504
Lorentz group and spinor representation of Sl(2, ) 509
Lorentz metric 192
Lorentz transformation 46 198
Magnetic field 119
Magnetic field and topology 123 387
Magnetic field , 1-form 121
Magnetic field , 2-form 120
Magnetohydrodynamics 145
Manifold 13 19
Manifold with boundary 106
Manifold, closed 120
Manifold, complex 21
Manifold, integral 166
Manifold, mechanical 180
Manifold, orientable 83
Manifold, product 15
Manifold, pseudo-Riemannian 45
Manifold, Riemannian 45
Manifold, symplectic 146
Map of manifolds: critical points and values 28
Map of manifolds: regular points and values 28
Map, canonical 149
Map, coordinate 20
Map, differentiable 20
Map, exponential 284 399
Map, geographical 230
Map, inclusion 79
Map, projection 415
Matrix group 394
Maurer — Cartan equations 403 477
Maurer — Cartan form 476
Maximal atlas 15
Maximal torus 393
Maxwell's equations 120—123 198 200 536
Maxwell's equations on a 3-sphere 163
Maxwell's equations on a curved space 366—367
Maxwell's equations on a torus 122
Maxwell's equations on projective space 164
Maxwell's equations, independence of 200
Mayer — Lie system 174
Mean curvature 207 311 529
Mean curvature and divergence 224
Mesons 538
Mesons, Yukawa 540
Metric, conformally related 531
Metric, flat or locally euclidean 263
Metric, Lorentz or Minkowski 192
Metric, potentials 293
Metric, pseudo-Riemannian 45
Metric, Riemannian 45
Metric, spatial 297
Metric, static 292 296
Metric, stationary 291
Metric, tensor 43
Minimal submanifold 311 528
Minimal submanifold, surface 227 305
Minimization of arc length 286
Minkowski electromagnetic field tensor 197
Minkowski force 195
Minkowski metric and space 46 192
Mode, normal 65
Mode, zero 465
Moebius band 18
Momentum, 4-vector 194
Momentum, canonical 439
Momentum, classical 194
Momentum, density 320 322
Momentum, generalized 55
Momentum, kinematical 436
Momentum, operator 439
Monopole bundle 444 473
Morse deformation 47
Morse equalities 387 428
Morse index 328 384
Morse inequalities 385 386
Morse lacunary principle 388
Morse lemma 384
Morse polynomial 385
Morse theory 382—388
Morse type number 385 604
Multilinear 58
Myers's theorem 576—578
Neighborhood 12
Noether's theorem 527—529
Nomizu's theorem 530
Normal bundle 419 616
Normal coordinates 287 303
Normal derivative 364
Normal map 208
Normal mode 65
Nucleon, Heisenberg 537
Nucleon, Yang — Mills 538
Obstruction cocycle 609—612
One parameter group 31
Open set 11 12
Orientability 83
Orientability and curvature 331
Orientability and homology 349
Orientability and two-sidedness 84
Orientable bundle 611
Orientable manifold 83
Orientable transverse 115
Orientation 82
Orientation of the boundary 110
Orientation, coherent 341
Orientation, transverse 115
Orthogonal group, O(n) 9 392
Orthogonal group, SO(n) 9 392
Osculating plane 191
Paper folding 315
Parallel displacement 237
Parallel displacement, independence of path 260
Parallelizable 252
Parameter, distinguished or affine 272
Parameterized subset 97
Partition of unity 107
Partition of unity and Riemannian metrics 109
Passes peaks and pits 427
Path ordering 555
Pauli algebra 501
Pauli matrices 493
Period of a form 357
Periodic motion 282
Periodic motion for double pendulum 284
Periodic motion for rigid body 331
Pfaffian 167
Phase 448 535
Phase, space 55
Phase, space, extended 151
Physical components 48 630
Piola — Kirchhoff stress forms, first 622
Piola — Kirchhoff stress forms, second 623
Poincare 1-form 56
Poincare 1-form, extended 151
Poincare 2-form 80
Poincare 2-form, extended 151 437
Poincare characteristic 604
Poincare duality 375
Poincare Index Theorem 421—428
Poincare lemma and converse 160
Poincare metric 239 258
Poincare metric, geodesics 274 530
Poincare polynomial 385
Poisson bracket ( , ) 154
Poisson equation 293 371
Potential of a closed form 158 160—164
Potential, global vector 443 448
Potential, monopole 444
Potential, singularities see "Dirac string"
Poynting vector 322
Principal bundle 454 458 481
Principal directions 207 310
Principal normal 191
Principal normal curvatures 207 310
Principle of least action 281
Probability amplitude 447
Projection 49 415
Projection, homomorphism 605
Projective space 16 85
Projective space, 22
Projective space, 16
Projective space, homogeneous coordinates 17
Proper time 193 292
Pseudo-form 86
Pseudo-riemannian 45
Pseudoform 86
Pseudoform, integration of 114—417
Pull-back and integration 102
Pull-back in elasticity 81 622
Pull-back of covariant tensors 53 77 79
Pull-back, bundle 622
Pure gauge 553
Quantization of a gauge field 536
Quantization of a gauge field, topological 261
Quark 540
Quasi-static 179
Quaternion 502
Quotient group 345
Radius of curvature 192 221
Rate of deformation tensor 632—634
Regular points and values 28
Relative boundaries, cycles, and homology groups 379—381
Relative homology sequence 604
Relativistic equations of mass 194
Relativistic equations of motion 303
Reparameterization 101
Representation 481
Representation of a group 481 482
Representation, adjoint, Ad 486
Representation, dual 482
Representation, tensor product 482
Residue of a form 159
Rest mass 194
Retraction 217
Ricci curvature 315 374 577
Ricci identities 302
Ricci tensor 295
Riemann sectional curvature K( ) 313—314
Riemann sphere 21
Riemann Theorem 266
Riemann — Christoffel curvature tensor 229
Riemannian connection 242
Riemannian manifold and metric 45
Riemannian manifold and metric on a surface of revolution 258
Riemannian manifold and metric, bi-invariant 563
Rigid body 9 331
Rotation group SO(n) 392 492
Sard's theorem 29
Scalar curvature R 296
Scalar product 42
Scalar product of Hermitian matrices 494
Scalar product, global 361
Scalar product, nondegenerate 42
Schroedinger's equation 439
Schroedinger's equation in curved space 442
Schroedinger's equation with an electromagnetic field 440 443
Schwarz's formula 228
Schwarzschild solution 320—322
Section 50 416 466
Section, holomorphic 467
Section, p-form section of a vector bundle 488
Sectional curvature 313
Self (anti) dual field 549
Self adjoint 205 317
Serret — Frenet formulas 196 431
Simon connection 472
simplex 333
Simplex, boundary 335
Simplex, face 335
Simplex, ordered 335
Simplex, orientation 336
Simplex, singular 334
Simplex, standard 333
Simplicial complex 343
Simply connected 283 329 595
Singularity of a vector field 422
Skeleton 610
Smooth 7
Soap bubbles and films 226—228
Реклама