Авторизация
Поиск по указателям
Frankel T. — The geometry of physics: an introduction
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: The geometry of physics: an introduction
Автор: Frankel T.
Аннотация: This book is intended to provide a working knowledge of those parts of exterior differential forms, differential geometry, algebraic and differential topology, Lie groups, vector bundles and Chern forms that are essential for a deeper understanding of both classical and modern physics and engineering. Included are discussions of analytical and fluid dynamics, electromagnetism, thermodynamics, the deformation tensors of elasticity, soap films, special and general relativity, the Dirac operator and spinors, and gauge fields, including Yang-Mills, the Aharonov-Bohm effect, Berry phase, and instanton winding numbers. Before discussing abstract notions of differential geometry, geometric intuition is developed through a rather extensive introduction to the study of surfaces in ordinary space; consequently, the book should also be of interest to mathematics students. This book will be useful to graduate and advanced undergraduate students of physics, engineering and mathematics. It can be used as a course text or for self study.
Язык:
Рубрика: Физика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 2001
Количество страниц: 688
Добавлена в каталог: 15.12.2013
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Divergence 93 136 304
Divergence of a form 365
Divergence of a symmetric tensor 300
Divergence theorem 139
Divergence, exterior covariant 545
Dual basis 39
Dual bundle 417 482
Dual Hodge * 362
Dual space 39
Eigenvalue of a quadratic form 63 209
Einstein equations 296 316 317
Einstein equations, Wheeler's version 318
Einstein geodesic assumption 292 297
Einstein tensor G 315
Electric field 119
Electric field and topology 123 378 381
Electric field , 1-form 120
Electric field , 2-form 121
Electromagnetic bundle 441
Electromagnetic connection 440
Electromagnetic field strength 197
Electromagnetic Lagrangian 308
Electromagnetic stress-energy-momentum tensor 308
Electromagnetic vector potential 1-form 199
Electromagnetism and Maxwell's equations in curved spacetime 366—367
Electromagnetism and Maxwell's equations on projective space 164
Electromagnetism and Maxwell's equations on the 3-sphere 163
Electromagnetism and Maxwell's equations on the 3-torus 122
Electromagnetism and Maxwell's equations, existence and uniqueness 378 387
Embedded submanifold 27
Energy of a path 274
Energy of deformation 623—626
Energy, density 316
Energy, hypersurface 148
Energy, hypersurface, invariant form 150
Energy, internal 179
Energy, momentum tensor 295
Energy, momentum vector 195
Energy, rest 195
Energy, total 148 196
entropy 183
Entropy, empirical 185
Equations of motion 144
Equations of motion, relativistic 303
Equilibrium equations 630—632
Euclidean metric in quantum fields 551
Euler characteristic 423 426
Euler equations of fluid flow 144
Euler integrability condition 166
Euler principle of least action 281
Exact form 156
Exact sequence 598—600
Exact sequence, homology 604
Exact sequence, homotopy 600
Exact sequence, short 599
EXP 284
Exponential map for a Lie group 399 403
Extension theorem 592
Exterior algebra 68
Exterior covariant differential 250 430
Exterior covariant differential of a form section of a vector bundle 488
Exterior covariant divergence 545
Exterior differential d 73
Exterior differential d, coordinate expression 76
Exterior differential d, spatial d 141
Exterior form 66
Exterior form and vector analysis 71
Exterior power operation 588
Exterior product 67
Exterior product and determinants 71
Exterior product, geometric meaning 70
Face 335
Faraday's law 121
Fermat's principle 297
Fiber 49 415
Fiber bundle 451 594
Fiber coordinate 416
Fiber over p 416
Fiber space 593
Field strength 64
Flamm paraboloid 321
Flow generated by a vector field 32 33
Flow generated by invariant fields 408
Flow generated by Lie bracket 129
Flow, straightened 35
Fluid flow 30 143—145
Fluid flow, magnetohydrodynamic 145
Foliation 173
Force, classical 195
Force, Lorentz 119
Force, Minkowski 195
Form and pseudo-form 122
Form of type Ad 489 490
Form with values in a Lie algebra 475 477
Form, bi-invariant 561—563
Form, Cartan 562
Form, Cauchy stress form 618
Form, closed 156
Form, exact 156
Form, exterior 66
Form, first fundamental 202
Form, harmonic 370
Form, heat 1-form 179
Form, integration of 95—102
Form, integration of and pull-backs 102
Form, invariant 395
Form, Maurer — Cartan 476
Form, normal 376
Form, p-form 41
Form, pull-back 77—82
Form, second fundamental 204 309
Form, second fundamental and expansion of the universe 318 319
Form, stress: Cauchy 618
Form, stress: Piola — Kirchhoff 622 623
Form, tangential 376
Form, vector bundle-valued 429
Form, vector-valued, dr and dS 203 248
Form, volume 86 88
Form, work 1-form 179
Frame bundle 453
Frame e 243
Frame e of sections 417
Frame e, change of 253
Frame e, coordinate 243
Frame e, orthonormal 255
Frobenius chart 167
Frobenius theorem 170
Functional derivative 307
Fundamental group 567—569 578
Fundamental theorem of algebra 215
Fundamental vector field 455
Galloway's theorem 578
Gauge bundle 490
Gauge field 255 536
Gauge invariance 441 449 533—536
Gauge particles: gluons 540
Gauge particles:mesons 538
Gauge particles:photons 536
Gauge principle 537
Gauge transformation 255 490
Gauge transformation, global 535
Gauss curvature 207
Gauss equations 229 310 311—314
Gauss equations, relativistic meaning 316—318
Gauss formula for variation of area 225
Gauss law 121
Gauss lemma 286
Gauss linking or looping integral 218
Gauss normal map 208 215 260
Gauss theorema egregium 231 317—318
Gauss — Bonnet theorem 215 323 462
Gauss — Bonnet theorem as an index theorem 465
Gauss — Bonnet theorem, generalized 465—468
Gaussian coordinates 284
Gell-Mann matrices 540
General linear group GL(n) 254 391
General relativity 291—322
Generalized momentum 55
Generalized velocity 50
Geodesic 233 271—274
Geodesic in a bi-invariant metric 563
Geodesic, circle 287
Geodesic, closed 281 284
Geodesic, completeness 564
Geodesic, curvature 235 239
Geodesic, equation 235
Geodesic, J. Bernoulli's theorem 234
Geodesic, null 303
Geodesic, polar coordinates 287
Geodesic, stability 324 326
Geodesic, submanifold 310
Geodesic, submanifold, total 311
Geodesy 252
Gluons 540
Gradient vector 45
Grassmann algebra see also "Exterior algebra"
Grassmann algebra, manifold 459
Green's reciprocity 647
Green's theorem 368
Group, , , 336
Group, boundary 344
Group, chain 337
Group, cycle 344
Group, de Rham 356
Group, exact sequence 598
Group, homology 345
Group, homomorphism 337 398
Group, homotopy 596
Group, quotient 345
H. Cartan's formula 135
Haar measure 397 541
Hadamard's lemma 126
Hairy sphere 423
Hamilton's equations 147
Hamilton's principle 154 275
Hamilton's principle in elasticity 626—629
Hamilton, on composing rotations 499
Hamiltonian 147
Hamiltonian flow 148
Hamiltonian operator 439
Hamiltonian relativistic 196
Hamiltonian vector field 148
Harmonic cochain 641
Harmonic field 376
Harmonic form 370
Harmonic form in a bi-invariant metric 564
Hawking singularity theorem 579
Heat 1-form 179
Helicity 145
Helmholtz decomposition 372
Hermitian adjoint t 392
Hermitian line bundle 466
Hessian matrix 383
Hilbert action principle 308
Hilbert space inner product 361
Hilbert variational approach 305—308 368
Hodge operator 362
Hodge codifferential d* 364
Hodge decomposition 372 388
Hodge theorem 371
Hodge theorem for normal forms 381
Hodge theorem for tangential forms 377
Holomorphic 158
Holonomic constraint 175
Holonomy 259
Homeomorphism 13
Homogeneous space 458
Homologous 345
Homology group 345—355
Homology group, relative 379
Homology group, relative, sequence 604
Homomorphism 337 398
Homomorphism, algebra 78
Homomorphism, boundary 338 601
Homomorphism, induced 337
Homotopically critical point 382
Homotopy 591
Homotopy and homology 603
Homotopy groups 596—598
Homotopy groups and covering spaces 605
Homotopy groups of spheres 597 598
Homotopy groups , computation of 605—608
Homotopy, covering homotopy 592
Homotopy, free homotopy class 282 283
Homotopy, sequence for a bundle 600—603
Hopf bundle 473 474
Hopf map and fibering 606
Hopf theorem 427
Hopf — Rinow theorem 564
Horizontal distribution 263—266 481
Hurewicz Theorem 603
Hyperelastic 626
Hypersurface 6
Hypersurface, 1- and 2-sided 84
Hypersurface, parallel 286
Immersion 169 173
Implicit function theorem 5
Incidence matrix 645
Inclusion map 79
Index of a section 466
Index of a vector field see also "Kronecker index"
Index theorem 465
Indicator 315
Infinitesimal generator 399
Instanton 550
Instanton, winding number 556 560
Integrability condition 166 170 174
Integrable constraint 175
Integrable distribution 167
Integral curve 31
Integral manifold 166
Integrating factor 183
Integration of forms 96—109
Integration of pseudoforms 114—117
Integration over manifolds 104—109
Interaction 534
Interior product 89
Intersection number 219
INTRINSIC 234
Intrinsic, derivative 235
Invariant form 395
Invariant vector field 395
Invariant volume form 397
Inverse function theorem 29
Inverse image 12
Involution 167
Isometry 230 314
Isometry, fixed set 314
Isometry, invariant 231
Isotropy subgroup 457
j 432
Jacobi determinant 5
Jacobi equation of geodesic variation 273
Jacobi field 129 273 326—329
Jacobi identity 403
Jacobi metric 281
Jacobi principle of least action 281
Jacobi rule for change of variables in an integral 101
Jacobi variational equation 128
Killing field 528
Реклама