Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Candel A., Conlon L. — Foliations I
Candel A., Conlon L. — Foliations I



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Foliations I

Авторы: Candel A., Conlon L.

Аннотация:

This is the first of two volumes on the qualitative theory of foliations. This volume is divided into three parts. It is extensively illustrated throughout and provides a large number of examples. Part 1 is intended as a "primer" in foliation theory. A working knowledge of manifold theory and topology is a prerequisite. Fundamental definitions and theorems are explained to prepare the reader for further exploration of the topic. This section places considerable emphasis on the construction of examples, which are accompanied by many illustrations.
Part 2 considers foliations of codimension one. Using very hands-on geometric methods, the path leads to a complete structure theory (the theory of levels), which was established by Conlon along with Cantwell, Hector, Duminy, Nishimori, Tsuchiya, et al. Presented here is the first and only full treatment of the theory of levels in a textbook.
Part 3 is devoted to foliations of higher codimension, including abstract laminations (foliated spaces). The treatment emphasizes the methods of ergodic theory: holonomy-invariant measures and entropy. Featured are Sullivan's theory of foliation cycles, Plante's theory of growth of leaves, and the Ghys, Langevin, Walczak theory of geometric entropy.
This comprehensive volume has something to offer a broad spectrum of readers: from beginners to advanced students to professional researchers. Packed with a wealth of illustrations and copious examples at varying degrees of difficulty, this highly-accessible text offers the first full treatment in the literature of the theory of levels for foliated manifolds of codimension one. It would make an elegant supplementary text for a topics course at the advanced graduate level. Foliations II is Volume 60 in the AMS in the Graduate Studies in Mathematics series.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1999

Количество страниц: 398

Добавлена в каталог: 21.11.2013

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Poincare — Bendixson theorem      158 165
Poincare — Bendixson theorem, generalization of      200
Poincare — Bendixson theory      156
Poincare — Bendixson theory, generalized      165
Poincare — Hopf theorem      331
Product neighborhood      205
Projection to a leaf in the negative direction      197
Projection to a leaf in the positive direction      197
Pseudo-integral      376
Pseudogroup      58
Pseudogroup, equicontinuous      354
Pseudogroup, holonomy      280
Pseudogroup, paradoxical      307
Pseudogroup, uniformly Lipschitz      354
PSI(n,$\mathbb{R}$)      11
Pullback (of a foliation)      79
Quasi-foliated bundle      301
Quasi-isometric metrics      309
Quasi-isometry      310
Rectangular neighborhood      19
Reeb component      88 126
Reeb foliation of $S^{3}$      93
Reeb foliation of the solid torus      15
Reeb foliation, entropy of      370
Reeb foliation, obtained by spinning      85
Reeb foliation, transverse foliation to      124
Reeb stability      67—70
Reeb stability, theorem      67
Reeb stability, theorem (for perturbations)      69
Reeb stability, theorem (generalized)      68
Reeb stability, theorem (globalization of)      141
Reeb stability, theorem (local)      301
Reeb, G.      88 142
Reglue      18
Regular pair $\Gamma$, $\Gamma_{1}$      353
Resilient leaf      184 323 379—386
Riemann surface      294
Riemannian metric (on a foliated space)      298
Riesz representation theorem      376—377
Rotation number      217
Roussarie foliation      39 314
Roussarie, R.      39
Rudin, W.      377
Rummler's criterion for geometric tautness      261—265
Rummler's criterion for geometric tautness, statement of      265
Rummler, H.      261
Sacksteder contraction      183
Sacksteder point      183
Sacksteder, R.      108 165 166 183 208
Saturated set      103
Saturated set, open      126
Saturated set, open without holonomy      205—208
Schachermayer, W.      142
Schwartz, A.J.      165
Schwartz, L.      231
Schwartzmann, S.      231
Schweitzer, P.      142 340
Section, local      55 286
Sector of a plaque      338
Separatrix      157
Separatrix, stable      157
Separatrix, unstable      157
Shift map      275
Shortcut      185
Shub, M.      296
Singular submanifold      234
Singularity, center      153
Singularity, saddle      153
Sl(n,$\mathbb{R}$)      11
Slope, irrational      9
Slope, rational      9
Smooth      3
Smoothability      200
Smoothness in foliated spaces      277
Solid torus      15
Sondow, J.      194
Special linear group      11
Spine of open book      268
Spinning (a foliation)      15 84—85
Spiral      179
Spiraling      197
Spiraling on the negative side      198
Spiraling on the positive side      197
Stable      69
Stable property      251
Stallings, J.      221
Strong dual      233
Submanifold, immersed      5
Submanifold, minimal      262
Submersion      6
Subpseudogroup      58 59
Subset, $\mathcal{F}$-saturated      65
Subset, meager      65
Subset, residual      65
Subset, unbounded      111
Sullivan's criterion for geometric tautness      265—272
Sullivan's criterion for geometric tautness, statement of      266
Sullivan, D.      146 229 231 261 296 330 331
supp $\mu$      214
Suspension      71—79
Suspension of a pair of diffeomorphisms      19
Symmetric generating set of a group      316 351
Symmetric generating set of a pseudogroup      168 352
Takamura, M.      194
Tamura, I.      101
Tangent bundle of a foliated space      279
Tangent bundle of a foliation      32
Tangent homology      266
Tarski, A.      306
TAUT      146
Tautness, geometric      261
Tautness, homological      266
Tautness, topological      261 see
Theory of levels      166 187—196 380
Thurston stability theorem      142—145
Thurston stability theorem, statement of      142
Thurston, W.      39 142
Tiling of the Euclidean plane      290
Tiling of the hyperbolic plane      73 291
Tiling, Penrose      291
Tischler's theorem      220—221
Tischler's theorem, statement of      221
Tischler, D.      41 65 220
Total holonomy      48
Transversal (closed)      85—90 145—149
Transversal (closed), definition of      86
Transversal (closed), existence of      86
Tsuboi, T.      218
Tsuchiya, N.      165 194
Tubular neighborhood of a closed transversal      88
Tubular neighborhood, foliated      88
Turbulization      90
Turbulization does not change concordance class      99
Type of a leaf      117 199
Type of a manifold      114
Type of an end      114 199
Type, topological      114
Uniform structure      350
Uniformization      295 341—345
Uniformization function      294
Uniformization theorem of Koebe — Poincare — Klein      294
Upper half plane      11
Wagon, S.      306
Walczak, P.      229 348 358 360 374
Wallet, G.      218
Waterfall construction      86
Weingarten map      262
Whitehead's Theorem      50
Whitehead, J.H.C.      50
Williams, R.      284
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте