Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Candel A., Conlon L. — Foliations I
Candel A., Conlon L. — Foliations I



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Foliations I

Авторы: Candel A., Conlon L.

Аннотация:

This is the first of two volumes on the qualitative theory of foliations. This volume is divided into three parts. It is extensively illustrated throughout and provides a large number of examples. Part 1 is intended as a "primer" in foliation theory. A working knowledge of manifold theory and topology is a prerequisite. Fundamental definitions and theorems are explained to prepare the reader for further exploration of the topic. This section places considerable emphasis on the construction of examples, which are accompanied by many illustrations.
Part 2 considers foliations of codimension one. Using very hands-on geometric methods, the path leads to a complete structure theory (the theory of levels), which was established by Conlon along with Cantwell, Hector, Duminy, Nishimori, Tsuchiya, et al. Presented here is the first and only full treatment of the theory of levels in a textbook.
Part 3 is devoted to foliations of higher codimension, including abstract laminations (foliated spaces). The treatment emphasizes the methods of ergodic theory: holonomy-invariant measures and entropy. Featured are Sullivan's theory of foliation cycles, Plante's theory of growth of leaves, and the Ghys, Langevin, Walczak theory of geometric entropy.
This comprehensive volume has something to offer a broad spectrum of readers: from beginners to advanced students to professional researchers. Packed with a wealth of illustrations and copious examples at varying degrees of difficulty, this highly-accessible text offers the first full treatment in the literature of the theory of levels for foliated manifolds of codimension one. It would make an elegant supplementary text for a topics course at the advanced graduate level. Foliations II is Volume 60 in the AMS in the Graduate Studies in Mathematics series.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1999

Количество страниц: 398

Добавлена в каталог: 21.11.2013

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Foliation(s), transversely affine      42 373
Foliation(s), transversely homogeneous      34
Foliation(s), transversely Lie      34
Foliation(s), transversely orientable      28
Foliation(s), transversely Riemannian      33
Form on a foliated space      301
Form, closed, defining foliation      24
Form, closed, group of periods of      42
Form, closed, periods of      24 41
Form, defining foliation      24
Form, distributional      231
Form, transverse to a foliation      240 265
Frobenius theorem      34—43
Frobenius Theorem, statement of      37
Frobenius theorem, vector field version      36
Fundamental domain      72
G-orbit      18 282 285
G-orbit, global      286
G-orbit, local      286
Gabai, D.      197
Gauss — Bonnet theorem      148 331
General position      151—164
General position, definition of      152
Geodesic spray      88
Geodesic spray, leafwise      89
Germ(s) of a foliation      63
Germ(s) of a local homeomorphism      60
Germ(s), isomorphic (of foliations)      63
Germinal holonomy      59—67
Ghys, E.      194 229 345 358 360 374
Gluck, H.      266
Glue      18
Gluing, tangential      90
Gluing, transverse      81
Godbillon — Vey class      38 99 192
Godbillon — Vey class of Hirsch foliation      373
Godbillon — Vey class, generalized      40
Godbillon — Vey class, invariance, under concordance      101
Godbillon — Vey class, invariance, under integrable homotopy      101
Godbillon — Vey class, invariance, under isotopy      101
Godbillon — Vey class, invariance, under turbulization      100
Godbillon — Vey class, naturality of      81
Godbillon — Vey class, nonvanishing of      347—348
Godbillon — Vey class, not a homotopy invariant      99
Godbillon — Vey number      101
Godbillon — Vey number, continuous variation of      101
Godbillon — Vey number, invariance under cobordism      101
Goodman, S.      147 252
gr(G)      312
Graph      157
Graph, closed      157
Group of periods      219
Group, Archimedean ordered      213
Group, Archimedean ordered, Hoelder's theorem      213
Group, general linear      288—290
Group, Lie, action of      284
Group, Lie, foliation by cosets      10 37
Group, Lie, locally free action of      285
Group, ordered      212
Group, special linear      11
Groupoid      59 62
Growth function      311
Growth type      311
Growth type of a covering space      318 319
Growth type of a function      312
Growth type of a group      317
Growth type of a group orbit      319
Growth type of a leaf      313
Growth type of a manifold      312
Growth type of a pseudogroup orbit      320
Growth type, exactly polynomial      313
Growth type, exponential      314
Growth type, fractional      316
Growth type, linear      313
Growth type, nonexponential      315
Growth type, quadratic      313
Growth type, quasi-polynomial      315
Growth type, subexponential      315
Growth type, weakly polynomial      316
gv($\mathcal{F}$)      38 81
Haar measure      287
Haefliger structure      99
Haefliger, A.      137 151 162 189
Hahn — Banach theorem      241
Halmos, P.      306
Hausdorff metric (or distance)      362
Hausdorff — Banach — Tarski paradox      306
Hector, G.      65 165 171
Herman, M.      218
hessian      152
Hilbert space, lamination of      299
Hirsch foliation, construction      371
Hirsch foliation, entropy of      373
Hirsch foliation, Godbillon — Vey class of      373
Hirsch, M.W.      370
Holonomy      45—67
Holonomy cocycle      28 280
Holonomy cocycle for a foliated bundle      50
Holonomy germ      59
Holonomy germ, an invariant of homotopy      60
Holonomy group      281
Holonomy group of a leaf      62
Holonomy group, germinal (of a leaf)      46
Holonomy group, infinitesimal (of a leaf)      46 66
Holonomy group, total      213
Holonomy group, total (of a foliated bundle)      45—55
Holonomy groupoid      46 62
Holonomy homomorphism(s) of a leaf      63 280
Holonomy homomorphism(s), conjugate      64
Holonomy homomorphism(s), infinitesimal (of a leaf)      66
Holonomy homomorphism(s), total (of a foliated bundle)      48
Holonomy pseudogroup      55—59 280
Holonomy pseudogroup of a foliated manifold      46
Holonomy pseudogroup of a foliated space      280
Holonomy pseudogroup of a foliation      59
Holonomy pseudogroup of a regular foliated atlas      59 280
Holonomy transformation      58
Holonomy transformation, total (of a foliated bundle)      51
Holonomy, fixed point of      133—134
Holonomy, germinal      59—67
Holonomy, trivial of a leaf      65
Holonomy, trivial of an open, saturated set      205—208
Holonomy, unbounded      173
Homology 3-sphere      148
Homology class defined by a compact leaf      138 245
Homology direction      254
Homology intersection      138
Homotopy of foliations      98
Homotopy, integrable (of foliations)      96
Homotopy, piecewise $C^{r}$ (of foliations)      98
Hopf fibration      268
Hopf, E.      306
Hurder, S.      194 340 348
Hyperbolic plane      11
Hyperbolic plane, a leaf at infinite level      194
Hyperbolic plane, Poincare disk model      104
Hyperbolic surface      294
Imanishi, H.      209
Inaba, T.      194
Incomplete foliated bundle      49
Infinite jail cell window      311
Infinite jungle gym      311
Infinite Loch Ness monster      111 311 332
Infinite repetition      181 198
Infinitesimally $C^{r}$-trivial      91
Infinitesimally trivial (at boundary)      91
Integrability condition      36
Integral manifold      36
Inverse limit      276 281
Inverse system      281
Isotopy of foliations      95—96
Isotopy of imbeddings      152
Isotopy of immersions      152
Isotopy, pull-back      96
Isotopy, push-forward      96
Isotropy group      284
Jacob's Ladder      311 332
Januszkiewicz, T.      340
Jessen, B.      275
Jouanolou, J.P.      142
Juncture      179
Juncture of spiral      197
Juncture, compact      180
Juncture, noncompact      181
Kakutani, S.      286
Kellum, M.      354
Key lemma      170
Kopell Lemma      166
Kopell Lemma, generalized      177—178
Kopell Lemma, proof      178
Kopell, N.      166
Kronecker's theorem      9
Lamination      235 273
Lamination in Hilbert space      273
Lamination, abstract      32 273
Langevin, R.      229 358 360 374
Laudenbach, F.      225
Leaf      5 279
Leaf space      6
Leaf, closed      103
Leaf, closed at infinity      330
Leaf, compact      137
Leaf, finite depth      197—204
Leaf, generic      65
Leaf, proper      115 133—135
Leaf, resilient      184 323 379
Leaf, semiproper      118 133—135
Leaf, semistable      134
Leaf, totally proper      192
Leafwise distance      299
Leaves, 2-dimensional      331—345
Leaves, border      107
Length of a plaque chain      29
Level set      6
Level(s), $k < \infty$      189
Level(s), 0      189
Level(s), filtration      189
Level(s), finite      189
Level(s), infinite      189
Level(s), theory of      166 187—196 380
Lie foliation      34
Lie group      10
Lie group, actions of      284—290
Lie group, foliation by cosets      10 37
Limit cycle      158
Limit set      115—118
Limit set of a leaf      115
Limit set of an end (e-limit set)      115
Limit set, $\alpha$-      158
Limit set, $\omega$-      46 157
Linear foliation of the 2-torus      9 24
Linear fractional transformation      11
Lipschitz foliated chart      369
Lipschitz foliated space      369
Lipschitz triple      369
Local flow      8
Local minimal set      166 171—177
Local minimal set, definition of      176
Local minimal set, exceptional      176
Local minimal set, single leaf      176
Long line      8
Map, first return      46
Map, first return of a flow      46
Map, transverse to a foliation      80
Mapping cylinder      48
Markov chain (topological)      107
Markov minimal set      107
Mean curvature      262
Measure, absolutely continuous      218
Measure, continuous      214
Measure, holonomy-invariant      213—214 301—307 325—329 373—378
Measure, holonomy-invariant as a foliation current      234—235
Measure, holonomy-invariant as a foliation cycle      236 245—251
Measure, holonomy-invariant for laminations      235—236
Measure, holonomy-invariant, coherent      302
Measure, holonomy-invariant, definition of      234 302
Measure, support of      214 302
Measure, transverse (holonomy) invariant      215 302
Millet, K.      65
Milnor, J.      138
Minimal set      103
Minimal set with locally dense leaves      103
Minimal set, exceptional      104
Minimal set, local      166 171—177
Minimal set, local, definition of      176
Minimal set, Markov      107 199
Montel space      237
Morita, S.      218
Morse function      152
Morse index of a critical point      152
Morse lemma      151 152
Morse singularity      151 152
Morse, M.      151
Moser, J.      98
Moussu, R.      165
Nadkarmi, M.      307
Nishimori, T.      165 194
Nonstandard analysis      142
Norm on a finitely generated group      316
Norm, $C^{k}$      232
Norm, uniform      375
Normal bundle      61
Normal fence      209
Normal fence, closed      211
Normal neighborhood (foliated)      63
Novikov order      149
Novikov, S.P.      87 209 258
Nucleus      131
Octopus decomposition      130 131
Open book decomposition      268
Orbit      18 284
Orbit, long, almost closed      254
Orientable foliated space      279
Orientable leafwise      89
Orientable, transversely      28
Orientation cover      94
Overdetermined system      34
P($\mu$)      219
Pair of pants      161 202 371
Paradoxical decomposition      306
Paradoxical pseudogroup      307
Pelletier, F.      165
Penrose tilings      291
Periodic end      198
Perturbation      68
Perturbation, k-parameter      69
Phillips, A.      331
Pixton, D.      167
Plante, J.F.      229 252 306 325 329
Plaque      20 276
Plaque chain      29 57 278
Plaque chain, covering a path      60
Plaque chain, length of      278
Plaque loop      51
Plateau, exploding      259
Plateau, moving      258
Poincare disk      104
Poincare duality      138 193 201
Poincare recurrence set      329
Poincare rotation number      217
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте