Авторизация
Поиск по указателям
Candel A., Conlon L. — Foliations I
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Foliations I
Авторы: Candel A., Conlon L.
Аннотация: This is the first of two volumes on the qualitative theory of foliations. This volume is divided into three parts. It is extensively illustrated throughout and provides a large number of examples. Part 1 is intended as a "primer" in foliation theory. A working knowledge of manifold theory and topology is a prerequisite. Fundamental definitions and theorems are explained to prepare the reader for further exploration of the topic. This section places considerable emphasis on the construction of examples, which are accompanied by many illustrations.
Part 2 considers foliations of codimension one. Using very hands-on geometric methods, the path leads to a complete structure theory (the theory of levels), which was established by Conlon along with Cantwell, Hector, Duminy, Nishimori, Tsuchiya, et al. Presented here is the first and only full treatment of the theory of levels in a textbook.
Part 3 is devoted to foliations of higher codimension, including abstract laminations (foliated spaces). The treatment emphasizes the methods of ergodic theory: holonomy-invariant measures and entropy. Featured are Sullivan's theory of foliation cycles, Plante's theory of growth of leaves, and the Ghys, Langevin, Walczak theory of geometric entropy.
This comprehensive volume has something to offer a broad spectrum of readers: from beginners to advanced students to professional researchers. Packed with a wealth of illustrations and copious examples at varying degrees of difficulty, this highly-accessible text offers the first full treatment in the literature of the theory of levels for foliated manifolds of codimension one. It would make an elegant supplementary text for a topics course at the advanced graduate level. Foliations II is Volume 60 in the AMS in the Graduate Studies in Mathematics series.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1999
Количество страниц: 398
Добавлена в каталог: 21.11.2013
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Foliation(s), transversely affine 42 373
Foliation(s), transversely homogeneous 34
Foliation(s), transversely Lie 34
Foliation(s), transversely orientable 28
Foliation(s), transversely Riemannian 33
Form on a foliated space 301
Form, closed, defining foliation 24
Form, closed, group of periods of 42
Form, closed, periods of 24 41
Form, defining foliation 24
Form, distributional 231
Form, transverse to a foliation 240 265
Frobenius theorem 34—43
Frobenius Theorem, statement of 37
Frobenius theorem, vector field version 36
Fundamental domain 72
G-orbit 18 282 285
G-orbit, global 286
G-orbit, local 286
Gabai, D. 197
Gauss — Bonnet theorem 148 331
General position 151—164
General position, definition of 152
Geodesic spray 88
Geodesic spray, leafwise 89
Germ(s) of a foliation 63
Germ(s) of a local homeomorphism 60
Germ(s), isomorphic (of foliations) 63
Germinal holonomy 59—67
Ghys, E. 194 229 345 358 360 374
Gluck, H. 266
Glue 18
Gluing, tangential 90
Gluing, transverse 81
Godbillon — Vey class 38 99 192
Godbillon — Vey class of Hirsch foliation 373
Godbillon — Vey class, generalized 40
Godbillon — Vey class, invariance, under concordance 101
Godbillon — Vey class, invariance, under integrable homotopy 101
Godbillon — Vey class, invariance, under isotopy 101
Godbillon — Vey class, invariance, under turbulization 100
Godbillon — Vey class, naturality of 81
Godbillon — Vey class, nonvanishing of 347—348
Godbillon — Vey class, not a homotopy invariant 99
Godbillon — Vey number 101
Godbillon — Vey number, continuous variation of 101
Godbillon — Vey number, invariance under cobordism 101
Goodman, S. 147 252
gr(G) 312
Graph 157
Graph, closed 157
Group of periods 219
Group, Archimedean ordered 213
Group, Archimedean ordered, Hoelder's theorem 213
Group, general linear 288—290
Group, Lie, action of 284
Group, Lie, foliation by cosets 10 37
Group, Lie, locally free action of 285
Group, ordered 212
Group, special linear 11
Groupoid 59 62
Growth function 311
Growth type 311
Growth type of a covering space 318 319
Growth type of a function 312
Growth type of a group 317
Growth type of a group orbit 319
Growth type of a leaf 313
Growth type of a manifold 312
Growth type of a pseudogroup orbit 320
Growth type, exactly polynomial 313
Growth type, exponential 314
Growth type, fractional 316
Growth type, linear 313
Growth type, nonexponential 315
Growth type, quadratic 313
Growth type, quasi-polynomial 315
Growth type, subexponential 315
Growth type, weakly polynomial 316
gv( ) 38 81
Haar measure 287
Haefliger structure 99
Haefliger, A. 137 151 162 189
Hahn — Banach theorem 241
Halmos, P. 306
Hausdorff metric (or distance) 362
Hausdorff — Banach — Tarski paradox 306
Hector, G. 65 165 171
Herman, M. 218
hessian 152
Hilbert space, lamination of 299
Hirsch foliation, construction 371
Hirsch foliation, entropy of 373
Hirsch foliation, Godbillon — Vey class of 373
Hirsch, M.W. 370
Holonomy 45—67
Holonomy cocycle 28 280
Holonomy cocycle for a foliated bundle 50
Holonomy germ 59
Holonomy germ, an invariant of homotopy 60
Holonomy group 281
Holonomy group of a leaf 62
Holonomy group, germinal (of a leaf) 46
Holonomy group, infinitesimal (of a leaf) 46 66
Holonomy group, total 213
Holonomy group, total (of a foliated bundle) 45—55
Holonomy groupoid 46 62
Holonomy homomorphism(s) of a leaf 63 280
Holonomy homomorphism(s), conjugate 64
Holonomy homomorphism(s), infinitesimal (of a leaf) 66
Holonomy homomorphism(s), total (of a foliated bundle) 48
Holonomy pseudogroup 55—59 280
Holonomy pseudogroup of a foliated manifold 46
Holonomy pseudogroup of a foliated space 280
Holonomy pseudogroup of a foliation 59
Holonomy pseudogroup of a regular foliated atlas 59 280
Holonomy transformation 58
Holonomy transformation, total (of a foliated bundle) 51
Holonomy, fixed point of 133—134
Holonomy, germinal 59—67
Holonomy, trivial of a leaf 65
Holonomy, trivial of an open, saturated set 205—208
Holonomy, unbounded 173
Homology 3-sphere 148
Homology class defined by a compact leaf 138 245
Homology direction 254
Homology intersection 138
Homotopy of foliations 98
Homotopy, integrable (of foliations) 96
Homotopy, piecewise (of foliations) 98
Hopf fibration 268
Hopf, E. 306
Hurder, S. 194 340 348
Hyperbolic plane 11
Hyperbolic plane, a leaf at infinite level 194
Hyperbolic plane, Poincare disk model 104
Hyperbolic surface 294
Imanishi, H. 209
Inaba, T. 194
Incomplete foliated bundle 49
Infinite jail cell window 311
Infinite jungle gym 311
Infinite Loch Ness monster 111 311 332
Infinite repetition 181 198
Infinitesimally -trivial 91
Infinitesimally trivial (at boundary) 91
Integrability condition 36
Integral manifold 36
Inverse limit 276 281
Inverse system 281
Isotopy of foliations 95—96
Isotopy of imbeddings 152
Isotopy of immersions 152
Isotopy, pull-back 96
Isotopy, push-forward 96
Isotropy group 284
Jacob's Ladder 311 332
Januszkiewicz, T. 340
Jessen, B. 275
Jouanolou, J.P. 142
Juncture 179
Juncture of spiral 197
Juncture, compact 180
Juncture, noncompact 181
Kakutani, S. 286
Kellum, M. 354
Key lemma 170
Kopell Lemma 166
Kopell Lemma, generalized 177—178
Kopell Lemma, proof 178
Kopell, N. 166
Kronecker's theorem 9
Lamination 235 273
Lamination in Hilbert space 273
Lamination, abstract 32 273
Langevin, R. 229 358 360 374
Laudenbach, F. 225
Leaf 5 279
Leaf space 6
Leaf, closed 103
Leaf, closed at infinity 330
Leaf, compact 137
Leaf, finite depth 197—204
Leaf, generic 65
Leaf, proper 115 133—135
Leaf, resilient 184 323 379
Leaf, semiproper 118 133—135
Leaf, semistable 134
Leaf, totally proper 192
Leafwise distance 299
Leaves, 2-dimensional 331—345
Leaves, border 107
Length of a plaque chain 29
Level set 6
Level(s), 189
Level(s), 0 189
Level(s), filtration 189
Level(s), finite 189
Level(s), infinite 189
Level(s), theory of 166 187—196 380
Lie foliation 34
Lie group 10
Lie group, actions of 284—290
Lie group, foliation by cosets 10 37
Limit cycle 158
Limit set 115—118
Limit set of a leaf 115
Limit set of an end (e-limit set) 115
Limit set, - 158
Limit set, - 46 157
Linear foliation of the 2-torus 9 24
Linear fractional transformation 11
Lipschitz foliated chart 369
Lipschitz foliated space 369
Lipschitz triple 369
Local flow 8
Local minimal set 166 171—177
Local minimal set, definition of 176
Local minimal set, exceptional 176
Local minimal set, single leaf 176
Long line 8
Map, first return 46
Map, first return of a flow 46
Map, transverse to a foliation 80
Mapping cylinder 48
Markov chain (topological) 107
Markov minimal set 107
Mean curvature 262
Measure, absolutely continuous 218
Measure, continuous 214
Measure, holonomy-invariant 213—214 301—307 325—329 373—378
Measure, holonomy-invariant as a foliation current 234—235
Measure, holonomy-invariant as a foliation cycle 236 245—251
Measure, holonomy-invariant for laminations 235—236
Measure, holonomy-invariant, coherent 302
Measure, holonomy-invariant, definition of 234 302
Measure, support of 214 302
Measure, transverse (holonomy) invariant 215 302
Millet, K. 65
Milnor, J. 138
Minimal set 103
Minimal set with locally dense leaves 103
Minimal set, exceptional 104
Minimal set, local 166 171—177
Minimal set, local, definition of 176
Minimal set, Markov 107 199
Montel space 237
Morita, S. 218
Morse function 152
Morse index of a critical point 152
Morse lemma 151 152
Morse singularity 151 152
Morse, M. 151
Moser, J. 98
Moussu, R. 165
Nadkarmi, M. 307
Nishimori, T. 165 194
Nonstandard analysis 142
Norm on a finitely generated group 316
Norm, 232
Norm, uniform 375
Normal bundle 61
Normal fence 209
Normal fence, closed 211
Normal neighborhood (foliated) 63
Novikov order 149
Novikov, S.P. 87 209 258
Nucleus 131
Octopus decomposition 130 131
Open book decomposition 268
Orbit 18 284
Orbit, long, almost closed 254
Orientable foliated space 279
Orientable leafwise 89
Orientable, transversely 28
Orientation cover 94
Overdetermined system 34
P( ) 219
Pair of pants 161 202 371
Paradoxical decomposition 306
Paradoxical pseudogroup 307
Pelletier, F. 165
Penrose tilings 291
Periodic end 198
Perturbation 68
Perturbation, k-parameter 69
Phillips, A. 331
Pixton, D. 167
Plante, J.F. 229 252 306 325 329
Plaque 20 276
Plaque chain 29 57 278
Plaque chain, covering a path 60
Plaque chain, length of 278
Plaque loop 51
Plateau, exploding 259
Plateau, moving 258
Poincare disk 104
Poincare duality 138 193 201
Poincare recurrence set 329
Poincare rotation number 217
Реклама