Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Cullis C.E. — Matrices and Determinoids
Cullis C.E. — Matrices and Determinoids



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Matrices and Determinoids

Автор: Cullis C.E.

Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1913

Количество страниц: 430

Добавлена в каталог: 25.03.2006

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Sum of similar affected      119 123
Sum of similar affected inferior simple minor detoids, long-cut      136 (see also “Simple minor Sum.”)
Sum of similar affected inferior simple minor detoids, short-cut      134
Superior simple minors      116 119 123 140—3
Symmetrical forms of the general solution of any system of linear algebraic equations      399—404
Symmetrical forms of the general solution of any system of linear algebraic equations of a homogeneous system      392—4
Symmetrical matrix      (see “Self-conjugate”)
System of homogeneous linear algebraic equations      380 386 392 404
System of homogeneous linear algebraic equations, Condition that all solutions shall be extravagant      409
System of homogeneous linear algebraic equations, definitions, condition for non-zero solutions      381
System of homogeneous linear algebraic equations, definitions, extravagant and non-extravagant solutions, unit solutions, zero solutions      404
System of homogeneous linear algebraic equations, definitions, matrix of the system      380
System of homogeneous linear algebraic equations, definitions, orthogonal solutions      405
System of homogeneous linear algebraic equations, examples of      390—1
System of homogeneous linear algebraic equations, extravagant solutions; are self-orthogonal      405
System of homogeneous linear algebraic equations, general solution, ordinary forms      381—2
System of homogeneous linear algebraic equations, general solution, symmetrical form      392—3
System of n unconnected equations in n variables      376—7
System of unconnected equations      371
Systems in which all solutions are extravagant or all solutions are mutually orthogonal      391 392 409—10
Systems of linear algebraic equations in general      365 373 395 399—411
Systems of linear algebraic equations in general, Complete sets of mutually orthogonal real solutions of a real system      411
Systems of linear algebraic equations in general, General solution, Ordinary forms      368—9 375-6
Systems of linear algebraic equations in general, Infinite solutions      403—4
Systems of linear algebraic equations in general, Mutually orthogonal solutions      411—12
Systems of linear algebraic equations in general, Symmetrical forms      400—3
Systems of real equations      387 389 406
The inverse and reciprocal of a non-singular matrix are undegenerate      267
Total affects      vi 24
Unaffected elements      vi.
Unaffected elements, derived products      24
Unaffected elements, detants      249 252—60
Unaugmented matrices of the matrix equations AX=C, XB=C, AXB=C      312 327 337
Unaugmented solutions of systems of linear algebraic equations      395 397 402 411
Unconnected connections between the rows of a matrix      326 337
Unconnected linear equations      365 371 376 383 415
Unconnected linear equations, linear functions      365
Unconnected linear equations, rows of a functional matrix      295
Unconnected linear equations, rows of a matrix      269
Unconnected solutions      395
Unconnected solutions of systems of linear equations      386 395
Unconnected solutions, Determination of all possible complete sets of      388 397 399
Undegenerate matrix, complete matrices of its minor detants are undegenerate      289
Undegenerate matrix, defined      265
Undegenerate matrix, if the product of two matrices is a non-zero scalar matrix (or an undegenerate square matrix), the factor matrices are undegenerate      267
Undegenerate square matrix has a unique undegenerate inverse      183 267 309
Undegenerate square matrix, beciprocal and conjugate reciprocal are undegenerate      267 289
Unit matrix, defined, notation for      11 177
Unit matrix, occurring as factor in a matrix product      177 207 219 231
Unreduced order of a simple minor      116
Vertical affects      vi 24 87
Vertical affects, minors      233 249
Vertical affects, moves      48
Vertical affects, steps      4
Vertical affects, suffixes      6 12
Zero matrix      155 207
Zero rank      265
Zeros, rows of active, in a matrix product      200—1
Zeros, rows of final, in any matrix      154
Zeros, rows of long, in a detoid      107
Zeros, rows of passive, in a matrix product      196—8
Zeros, rows of short, in a detoid      112
1 2 3 4
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте