Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Cullis C.E. — Matrices and Determinoids
Cullis C.E. — Matrices and Determinoids



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Matrices and Determinoids

Автор: Cullis C.E.

Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1913

Количество страниц: 430

Добавлена в каталог: 25.03.2006

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Equality of matrices, conventional (dissimilar matrices)      154
Equality of matrices, Conventionally equal matrices      154—6 161 173 204
Equality of matrices, Conventionally equal matrices are equivalent      156 173 204
Equality of matrices, identical (similar matrices)      154
Equations, Cancellation of factors in      357 325 336 354
Equations, Connections between      364 412 415
Equations, Equations with only extravagant solutions      391 409—10
Equations, Extravagant equations      388—92
Equations, Linear algebraic equations      364—415
Equations, Manipulation of      156—7 176—7 357
Equations, Matrix equations      156 176 299—358
Equations, Matrix equations of the first degree, AX=0      324—6
Equations, Matrix equations of the first degree, AX=C      302—5 312—27
Equations, Matrix equations of the first degree, AXB=0      354—6 (see also “Matrix equations of the first degree”)
Equations, Matrix equations of the first degree, AXB=C      309—11 337—57
Equations, Matrix equations of the first degree, X = A      300
Equations, Matrix equations of the first degree, X+A=B      302
Equations, Matrix equations of the first degree, XB=0      335—7
Equations, Matrix equations of the first degree, XB=C      306—9 327—37
Equipotent      297
Equipotent matrices      285 297
Equipotent matrices, have equal ranks      283 286 297
Equivalence of conventionally equal matrices      173
Expansion of bordered detant      240
Expansion of bordered detant of bordered detoid      241
Expansions of a detoid in terms of elements of a long row      105
Expansions of a detoid in terms of elements of a long row, generalisation      110
Expansions of a detoid in terms of simple minor detants      113
Expansions of a detoid in terms of simple minor detants of a long-cut minor matrix      116
Expansions of a detoid in terms of simple minor detants of a long-cut minor matrix, generalisations      121—3 143
Expansions of a detoid in terms of simple minor detants, generalisation      123
Expressions for, affects of derived sequences      57
Expressions for, detoid of a product of two matrices      210 215—6 220
Expressions for, detoid of any matrix product      228 233 243
Expressions for, elements of a product matrix      159 162—3 194
Extended derived matrix      90—1
Extended derived matrix, derived product      22 29
Extended derived matrix, derived sequence      56
Extended derived matrix, derived sequence, Affects unaltered by extension      91 29 56
Extravagant equations      388—92
Extravagant matrix, defined      288
Extravagant solutions of linear equations      404
Extravagant solutions of linear equations are self-orthogonal      405
Factor matrices, defined      158 190
Factors of a derived product      3
Factors of a derived product, relative affects of      24
Factors of a derived product, Sign of product independent of the order of its factors      13 47
Factors of special form in a matrix product, quasi-scalar matrix      179
Factors of special form in a matrix product, scalar matrix      178 207 219
Factors of special form in a matrix product, scalar number      157 206
Factors of special form in a matrix product, square matrix whose order is equal to the efficiency      224
Factors of special form in a matrix product, unit matrix      177 207 219
Factors of special form in a matrix product, zero matrix      207
Factors, cancellation of in a matrix equation      357 325 336 354
Factors, cancellation of in a matrix identity      358
Formation      (see “Schemes of formation”)
Forward moves, applied      49 50 62 91
Forward moves, defined      49 57
Forward steps, applied      12 24 55 56
Forward steps, defined      4 55
Functional dependences      415
Functional matrices, Rank and connections of      295
Fundamental matrix or detoid      86 248
Fundamental matrix or detoid, sequence      55
General solution of a matrix equation, formulae for AX=0      324
General solution of a matrix equation, formulae for AX=C      317 319 303
General solution of a matrix equation, formulae for AXB=0      354
General solution of a matrix equation, formulae for AXB=C      345 349 310
General solution of a matrix equation, formulae for XB=0      336
General solution of a matrix equation, formulae for XB=C      330 331 306
General solution of a system of linear algebraic equations, formulae for any system      368—9 375—6 400-3
General solution of a system of linear algebraic equations, formulae for homogeneous system      381—2 392
Generalisation of a determinoid      48 134 136—7 244
Generalisation of Laplace’s development of a determinant      119 123 143 Sum.”)
Homogeneous linear equations      (see “System”)
Horizontal suffixes      12
Horizontal suffixes, affects      24
Horizontal suffixes, minors      233—4 249
Horizontal suffixes, moves      48
Horizontal suffixes, steps      4
Identical equality of matrices      154
Identical long rows in a detoid      20 44
Identity, Cancellation of matrix factors in a matrix identity      358
Incomplete derived product      4 22
Incomplete derived product, affect not altered      29
Incomplete derived product, extended or completed      22 23
Incomplete derived sequence      55
Incomplete derived sequence, affect not altered      56
Incomplete derived sequence, extended or completed      56
Inferior simple minors      115 134 136—7 143
Inner elements of a sequence      76
Inner elements of a sequence, rows and elements of a matrix      39 44
Interchange of two elements in a derived product      13 27 47
Interchange of two elements in a sequence      72 76
Interchange of two elements in a sequence, inner and outer elements      76
Interchange of two long rows changes the sign of the fundamental detoid      20 36 43
Interchange of two long rows changes the sign of very complete derived product      44
Interchange of two long rows changes the sign of very simple minor detant      44
Interchange of two long rows changes the sign of very superior short-cut minor detoid      44
Interchange of two long rows in a detoid      20 36 43
Interchange of two parallel rows in a matrix      30 38
Interchange of two parallel rows in a matrix, inner and outer elements and rows      39
Interchange of two short rows in a detoid      44
Interchange of two suffixes in a matrix      36 44
Interchange of two suffixes in a matrix, inner and outer elements and rows      44
Invariance of the sign of a derived product      47
Invariance of the sign of a derived product of a complete derived product      13
Inverse matrices, defined      183
Inverse matrices, inverse of non-singular matrix      267
Inverse matrices, inverse post-factors      183 322
Inverse matrices, inverse pre-factors      183 335
Inverse matrices, principal inverse matrix      182
Inverse matrices, unique inverse of undegenerate square matrix      183 267 309
Inversions in a derived sequence      60
Inversions in a derived sequence, Affect determined by counting them      60
Irreducible matrix equations, defined      312 328 338
Irreducible matrix equations, Solutions when finitely solvable      323 333 352
Laplace’s development of a determinant, generalisations of      119 123 143 Case
Law of equality for matrices      153
Law of equality for matrices, Associative law for addition of matrices      155—6
Law of equality for matrices, Associative law for addition of matrices for matrix products      184 186 188
Law of equality for matrices, Commutative law for addition of matrices      155—6
Law of equality for matrices, Commutative law for addition of matrices not true for multiplication      174 208
Law of equality for matrices, Distributive law for multiplication by a scalar number      157
Law of equality for matrices, Distributive law for multiplication by a scalar number for matrix products      173 184 188—9
Leading element, line, row, diagonal, position      1 2 16 55
Leading element, line, row, diagonal, position, Moves which bring to leading position, a derived matrix      91—4
Leading element, line, row, diagonal, position, Moves which bring to leading position, a derived product      49
Leading element, line, row, diagonal, position, Moves which bring to leading position, a derived sequence      62—4
Linear algebraic equations      364—415
Linear functions, connections between      364
Long rows, Addition of detoids      107
Long rows, Addition to one long row of scalar multiples of other long rows      109
Long rows, defined      1 16
Long rows, Expansion of a detoid in terms of elements of a long row      105
Long rows, Expansion of a detoid in terms of the simple minor detants of a long-cut minor      119
Long rows, Interchange of two long rows      20 36 43
Long rows, Long-cut minors      115—23 136-8
Long rows, Manipulation of matrix equations      156—7 176—7 357
Long rows, Multiplication of a detoid by a scalar number      19 108
Long rows, Properties of      19—21 36 43—4 105-9
Long rows, Property of any two long rows      108 110
Long rows, Property of any two similar long-cut minors      122 123
Long rows, Sum of long-cut simple minor detoids of given reduced order      136
Long rows, Two long rows identical      20 44
Long rows, Vanishing of a long row      107
Manipulation of      156—7 176—7 357
Matrices of minor detants      248 253
Matrices of minor detants, standard      251 (see “Complete matrices of minor detants”)
Matrices, addition and subtraction of      155—6
Matrices, augmented and unaugmented      8 287 312 327 337 366 374
Matrices, degenerate and undegenerate      265
Matrices, equality of      153—5
Matrices, inverse      182—3
Matrices, quipotent      288 297
Matrices, similar      153—5
Matrices, singular and non-singular      266
Matrix equations      156 176 299—358
Matrix equations of the first degree      299—358
Matrix equations of the first degree, defined      299 300
Matrix equations of the first degree, The equation X+A—B      302
Matrix equations of the first degree, The equation X=A      300
Matrix equations of the first degree, The equations AX=0, XB=0, AXB=0, Conditions for non-zero solutions      325 336 354
Matrix equations of the first degree, The equations AX=0, XB=0, AXB=0, General solutions      304 324 307 335 310 354
Matrix equations of the first degree, The equations AX=0, XB=0, AXB=0, Ranks of solutions      325 336 355—6
Matrix equations of the first degree, The equations AX=C, XB=C, AXB=C, Augmented and unaugmented matrices      312 327 337
Matrix equations of the first degree, The equations AX=C, XB=C, AXB=C, Conditions for finite solvability      314 329 341
Matrix equations of the first degree, The equations AX=C, XB=C, AXB=C, Formulae for general solutions      317 319 330 331 345 349
Matrix equations of the first degree, The equations AX=C, XB=C, AXB=C, Infinite solutions      326 337 356
Matrix equations of the first degree, The equations AX=C, XB=C, AXB=C, Reduction to irreducible equations      312 328 338
Matrix equations of the first degree, The equations AX=C, XB=C, AXB=C, Simplest particular solutions      317 319 330 332 345 349
Matrix equations of the first degree, The equations AX=C, XB=C, AXB=C, Solutions when A and B are undegenerate square matrices      302 306 309
Matrix equations of the first degree, The equations AX=C, XB=C, AXB=C, Solutions when irreducible and finitely solvable      323 333 352
Matrix equations, Cancellation of factors in      357
Matrix factors, Cancellation of      357—63
Matrix factors, defined      158 190
Matrix factors, Special factors, quasi-scalar matrix      179
Matrix factors, Special factors, scalar matrix      178 207 219
Matrix factors, Special factors, square matrix whose order is equal to the efficiency of the product      224
Matrix factors, Special factors, unit matrix      177 207 219
Matrix factors, Special factors, zero matrix      207
Matrix identities, cancellation of factors in      358—63
Matrix products are associative      186 188
Matrix products are distributive      173 188—9
Matrix products are in general not commutative      174 208
Matrix products, Conjugates of      175 205
Matrix products, defined      158—64 184—90
Matrix products, Distribution over partial products      164 167 195 199
Matrix products, Properties of active rows      168—72 199—204
Matrix products, Properties of passive rows      164—8 195-9
Matrix products, Reciprocals of standard products of square matrices      261
Matrix products, Standard forms of      158 184 192
Matrix, cannot be equated to a non-zero scalar number      179
Matrix, conjugate      5
Matrix, conjugate reciprocal      111 180
Matrix, defined      1 153—64 184—90
Matrix, functional      295
Matrix, inverse, principal inverse      182—3
Matrix, quasi-scalar      179
Matrix, reciprocal      110—11
Matrix, rectangular      1
Matrix, scalar      178
Matrix, self-conjugate or symmetrical      5
Matrix, square      1
Matrix, undegenerate square      183 267 289 309
Matrix, unit      11 177
Matrix, zero      265 (see also “Rectangular matrix” “Square
Minor determinants, Affected minor detant is invariant for all derangements of its rows      101
Minor determinants, Affects of, theorems concerning      96—8 100-1
Minor determinants, Co-factors of      119
Minor determinants, Complete matrices of      248 253
Minor determinants, Complete matrices of distinct      115 249
Minor determinants, Complete matrices of of a long-cut minor matrix      122—3
Minor determinants, Complete matrices of of a short-cut minor matrix      138
Minor determinants, Sum of affected simple minor detants      115 209
Minor determinants, Sum of affected simple minor detants, affected minor detants of order k      134 136—7 244
Minor matrices and determinoids (cont.), Sum of products of a minor detoid and its co-factor belonging to two fixed complementary simple minors      140—3 107 116 138
Minor matrices and determinoids, Affected minor detoid invariant for derangements of its long rows      101
Minor matrices and determinoids, Affected minor detoid invariant for derangements of its long rows, affects unaltered by extension      91
Minor matrices and determinoids, Affected minor detoid invariant for derangements of its long rows, brought to leading position by moves      91—4
Minor matrices and determinoids, Affected minor detoid invariant for derangements of its long rows, complementary      102—4
Minor matrices and determinoids, Affected minor detoid invariant for derangements of its long rows, corranged and deranged      2 16
Minor matrices and determinoids, Affected minor detoid invariant for derangements of its long rows, extended and completed      90 91
Minor matrices and determinoids, Affects of, defined      86—90
Minor matrices and determinoids, Co-factors of minor detoids      141 106 119
Minor matrices and determinoids, Co-factors of minor detoids of simple minor detoids      145
Minor matrices and determinoids, defined      2 16
Minor matrices and determinoids, Simple minors      3 115 116
Minor matrices and determinoids, Simple minors, horizontal and vertical      233 234 249
Minor matrices and determinoids, Simple minors, inferior      116 134 136
Minor matrices and determinoids, Simple minors, long-cut      116 123 136
Minor matrices and determinoids, Simple minors, reduced and unreduced orders of      116
Minor matrices and determinoids, Simple minors, short-cut      116 123 134 138
Minor matrices and determinoids, Simple minors, superior      116 123
Minor matrices and determinoids, Theorems concerning      90—104
Minor sequences, Affects of, defined      56
Minor sequences, Affects of, defined of complementary minors      70
Minor sequences, Affects of, defined, Theorems concerning      62—71
Minor sequences, affects unaltered by extension      56
Minor sequences, brought to leading position by moves      62—4
Minor sequences, complementary      56 70 71
Minor sequences, complete      59
Minor sequences, complete and incomplete      55
Minor sequences, corranged and deranged      55
Minor sequences, defined      55
Minor sequences, distinct      61
Minor sequences, Expressions for affects      57—62
Minor sequences, Expressions for affects of corranged minors      59 61
Minor sequences, Expressions for affects of corranged minors of a sequence of natural numbers      61
Minor sequences, extended and completed      56
Minor sequences, Inversions in      60 (see “Affects of derived sequences”)
Minor sequences, standard arrangement of      251
Moves in a matrix, defined      48
Moves in a matrix, forward and backward      49
Moves in a matrix, horizontal and vertical      48
Moves in a matrix, moves bringing to leading position, a derived matrix      91—3
Moves in a matrix, moves bringing to leading position, a derived matrix, affect thereby determined      91
Moves in a matrix, moves bringing to leading position, a derived product      49
Moves in a matrix, moves bringing to leading position, a derived product, affect thereby determined      49
Moves in a sequence, defined      57
Moves in a sequence, forward and backward      57
Moves in a sequence, its affect thereby determined      49
Moves in a sequence, minor sequence brought to leading position by moves      49
Multiplication by or into it does not alter rank      283
Multiplication of      158—64 184—90
Multiplication of a matrix by a scalar number      157
Multiplication of a matrix by a scalar number is commutative and distributive      157
Multiplication of a matrix by a scalar number of a determinoid by a scalar number      19 108
Multiplication of a matrix by a scalar number of a matrix product by a scalar number      206
Multiplication of matrices      158—64 184—90
Multiplication of matrices is associative and distributive but in general not commutative      173—4 184—90 208
Mutually orthogonal solutions of a system of homogeneous equations      404
Mutually orthogonal solutions of any system of linear equations      411
Natural numbers, sequences of      60
Natural numbers, sequences of, affect of a corranged minor      61
Natural numbers, sequences of, affect of any minor      60
Non-commutative property of matrix products      174 208
Non-extravagant equations      388—92 399
Non-extravagant mutually orthogonal solutions of a system of homogeneous linear equations      405—7
Non-singular matrix, Beciprocal, conjugate reciprocal and inverse of      267
Non-singular matrix, defined      266
Non-zero solutions, conditions for      325 336 354 381
Notation for a scalar matrix      178
Notation for a unit matrix      11 177
Notation for augmented matrices      8
Notation for detoids      15 17 347
Notation for matrices      1 5 347
Notation for sequence      55 57
Order of a square matrix and detant      1 16
Orders of a matrix, horizontal and vertical      1
Orders of a matrix, horizontal and vertical of a detoid      1 16
Orders of a matrix, horizontal and vertical, Reduced and unreduced orders of a simple minor      116
Orthogonal solutions of a system of linear algebraic equations, complete sets of      406 407 411
Orthogonal solutions of a system of linear algebraic equations, Condition that all solutions shall be mutually orthogonal      409
Orthogonal solutions of a system of linear algebraic equations, defined      405 412
Outer elements of a sequence      76
Outer elements of a sequence, elements and rows of a matrix      39
Parallel rows, Interchanges of      30—44 (see “Interchange”)
Partial products, Matrix product expressed as a sum of      164 167 195 199
Partial products, product expressed as sum of      164 167
1 2 3 4
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте