Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Pal S.K., Pal A. (eds.) — Pattern Recognition: From Classical to Modern Approaches
Pal S.K., Pal A. (eds.) — Pattern Recognition: From Classical to Modern Approaches



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Pattern Recognition: From Classical to Modern Approaches

Авторы: Pal S.K., Pal A. (eds.)

Аннотация:

Presents recent developments in the classical and modern hybrid methodologies currently being applied in pattern recognition. The 21 chapters deal with decision theoretic classification using the statistical approach, neural networks, the fuzzy set approach, the use of genetic algorithms, and soft computing. Topics include Bayesian approaches for unsupervised classification, networks of spiking neurons in data mining, adaptive segmentation techniques for hyperspectral imagery, and writing speed and writing sequence invariant on-line handwriting recognition.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2001

Количество страниц: 612

Добавлена в каталог: 23.03.2006

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Statistical pattern recognition      280
Stochastic approximation      73
Stochastic grammar      9 196 197
Stochastic supervision      28 29
Stochastic supervision, ARE      55
Stochastic supervision, ARE of beta model      60
Stochastic supervision, ARE of logistic-normal model      59 61
Stochastic supervision, models, beta model      48
Stochastic supervision, models, Dirichlet model      49
Stochastic supervision, models, logistic-normal model      48 58
Stochastic supervision, models, multi-logit normal model      49
Stochastic supervision, models, nonrandom stochastic supervision models      46
Stochastic supervision, models, random      46
Stochastic supervision, probability distribution over labels      46
Stochastic supervision, supervision index      48 58
Stop-consonant-vowel (SCV)      551
Stopping criteria      170
Stroke direction sequence string      562 565
Stroke sequence string      561
Strong negation      257
Sub-string removal      572
Subset of features      427
Subword units      548
Sugeno integral, discrete      265
Sugeno integral, fuzzy      439 441
Supervised grammatical inference      206
Supervised learning      13 26 29 32 243
Supervised pattern recognition      4 116
Supervision efficiency      30
Supervision error models      28
Supervision models      46
Supervisor efficiency      29
Support      430
Support vector machines      285
Suprasegmental features      535 536
Syllable      550
Symbol-to-text conversion      545
Synaptic weight      303
Syntactic pattern recognition      283
Syntactic pattern recognition, block diagram      186
Syntactical rules      8
Syntax analysis      9
t-conorm      257
Target identification      506
Target segmentation      506
Teacher      3 116
Team of automata      92
Team of automata, CALA      91
Team of automata, FALA      93
Team of classifiers      425
template      148
Template for an object      154
Template, deformable      148 586—588
Template, deformed      149
Template, global parameters of      149 151
Template, graphical      152
Template, local parameters of      149 151
Template-matching technique      508
Temporal features      554
Testing set      311
Thin-plate splines      152
Time delay neural networks (TDNNs)      550
Time-adaptive snakes      583 585 586
Time-averaged kurtosis      310
Time-averaged signal power variance      309
Time-averaged skewness      310
Time-domain averaging      306
Time-relative signal power difference      310
Tongue diagnosis      576 590
Tongue diagnosis, features for      590
Tongue inspection      577 578
Tongue observation      577 578
Top-down induction      169
Traditional Chinese medicine (TCM)      576
Training samples      3 71 73 115 428
Training samples, labels of      116
Training set      82 311 427
Transmembrane potential      328
Tree adjoining grammar      195
Tree based classifier      174
Tree grammar      194
Tree induction      10
Tree, leaf node of      170
Tree, root node of      170
Tree, terminal node of      170
Uncertainty      474
Uncertainty rules      257 260
Unreliable supervision      27—29
Unreliable supervision, ARE      52
Unreliable supervision, models, binary memoryless      47
Unreliable supervision, models, consequently lying teacher      48
Unreliable supervision, models, nonrandom misallocation      46 47
Unreliable supervision, models, random misallocation      46 47
Unreliable supervisor, ARE      54
Unsupervised efficiency of intercept      43
Unsupervised efficiency of slope      43
Unsupervised grammatical inference      207
Unsupervised learning      13 26 28 30 33 39 243
Unsupervised learning, MLE      40
Unsupervised learning, possibility      38
Unsupervised pattern recognition      4 116
Unsupervised segmentation      521 522 526
Unvoiced source      535
Validation of decision trees      176
Validation set      311
Value set      384
Variable string lengths      353
Varying mutation probability      357
Vector quantization      544
Vertical gate spacing      310
Vertical gate width      310
Vertical resolution      304
VGA-classifier      353
VGACD-classifier      354
Visualization      317
Vocal tract system      534
Voice disorder identification      543 544
Voiced source      535
Vowel data      492
Warped image      160
Warped image, definition of      160
Watson distribution      152
Weighted cepstral distance      543
Weighting coefficient      485
Wind field      304
Wind profilers      304
Window estimators      7
Word spotting      544 553
z-step look-ahead      177
Zysno's compensatory operator      437
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте