Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Pal S.K., Pal A. (eds.) — Pattern Recognition: From Classical to Modern Approaches
Pal S.K., Pal A. (eds.) — Pattern Recognition: From Classical to Modern Approaches



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Pattern Recognition: From Classical to Modern Approaches

Авторы: Pal S.K., Pal A. (eds.)

Аннотация:

Presents recent developments in the classical and modern hybrid methodologies currently being applied in pattern recognition. The 21 chapters deal with decision theoretic classification using the statistical approach, neural networks, the fuzzy set approach, the use of genetic algorithms, and soft computing. Topics include Bayesian approaches for unsupervised classification, networks of spiking neurons in data mining, adaptive segmentation techniques for hyperspectral imagery, and writing speed and writing sequence invariant on-line handwriting recognition.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2001

Количество страниц: 612

Добавлена в каталог: 23.03.2006

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Imperfect teacher      249
Importance index      272
Importance sampling      131
Indicator function      178
Indiscernibility relation      384 385
Information gain      179
Information granules      246 389
Information matrix of subset of parameters      41
Information matrix, Fisher      41
Information matrix, logistic regression estimates      34
Information matrix, perfect supervision      36
Information system      384
Instance pool      552
Interaction index      272 273
Interestingness      454
Iris data      492
Isolated word recognition      546 548
Itakura distance      543
Iterated conditional modes (ICM) algorithm      149
Jump-diffusion sampling      119 142
Jump-positions      302
K-means algorithm      523 526
k-nearest neighbor rules      7
k-tail of a string      204
Kernel estimators      7
Kleene — Schutzenberger theorem      212
Knowledge discovery in databases (KDD)      17
Knowledge-based approaches      12
Knowledge-based networks      434 477
Kolmogorov — Smirnov distance      173
kurtosis      308
Labeling      244
landmarks      151
Landmarks, sampling of      154
Langevin equation      101
Language      191
Learning      3 115 239
Learning algorithm      95 98
Learning automata      75
Learning automata models      75
Learning automata, modules of      103
Learning by backpropagation of error      14 98 303 550
Learning epochs      239
Learning from stochastic supervisor      55
Learning intensity      239
Learning rate      303 312
Learning samples      115
Learning Vector Quantization      14
Linear discriminant      5 6 171 179
Linear discriminant analysis      432
Linear discriminant function      29—32 34 36
Linear discriminant function, compared to logistic regression      36
Linear prediction      544
Linear prediction (LP) spectrum      535
Linear prediction coefficients      544
Linear reward inaction $(L_{R-I})$ algorithm      78 86
Linguistic sets, $\pi$-sets      488
Linguistic sets, low, medium or high      488
Logic processor      233
Logistic function      302
Logistic regression      34 36
Logistic regression, estimates      34
Logistic regression, in unsupervised MLE      40
Logistic regression, non-efficiency      36
Logistic regression, robustness      36
Logistic regression, tool in ARE of other schemes      38
Look-ahead      176
Look-ahead, 1-step      177
Look-ahead, 2-step      177
Look-ahead, criteria      177
Look-ahead, texture-based      177 179
Look-ahead, z-step      177
Loss function      70 74
LP cepstral coefficients      544
Mahalanobis distance      31 35 58
Mahalanobis distance, dependence of ARE on      37
MAP estimate      149 154
Marginal likelihood, Candidate's estimator      132
Marginal likelihood, data-augmentation estimator      133
Marginal likelihood, estimation of      131 132
Marginal likelihood, Laplace — Metropolis estimator      132
Marked point process      126 128
Markov birth-death processes      126
Markov Chain Monte Carlo (MCMC), Gibbs sampling      138
Markov Chain Monte Carlo (MCMC), jump-diffusion sampling      117 119 142
Markov Chain Monte Carlo (MCMC), methods      117 137 149 155
Markov Chain Monte Carlo (MCMC), Metropolis — Hastings algorithm      140
Markov Chain Monte Carlo (MCMC), reversible jump sampling      117 124 144
Markov chains      346
Markov models      547
Markov random field      153
Markovian object process      159
Mathematical morphology, generalized erosion operator of      158
Maximum a posteriori probability (MAP) estimate      545
Maximum Likelihood Estimation      29 32—34 545 548
Maximum likelihood estimation, logistic regression      34
Maximum likelihood estimation, unsupervised learning      39
Maximum likelihood estimator (MLE)      158 548
Maximum membership rule      426
Maxterms      232
Measures of quality approximation      386
Medical diagnosis      26 27
Medical imaging, data fusion for      160
Mel-scale      543
Mel-scale, cepstral coefficients      544 550
Membership function      484
Metropolis — Hastings algorithm      140 155
Minimal decision rules      406
Minimal reduct      394
Minimum distance classifier      7
Minimum distance classifier, modified      512
Minimum error based pruning      175
Minterms      232
Misclassification effect      51
Mislabeling      27—29
Mislabeling, models for      45
Mixture models      39 116 117
Mixture models, analysis of      116
Mixture of labeled-unlabeled patterns      243
Mixture proportions      26 30 32
Mixtures of probability distributions      116
MLP architecture      368
Modal method      176
Model choice problem      120
Modifiers of fuzzy sets      488
Modules of learning automata      103
Multi-dimensional $\pi$-function      479
Multi-level activation functions      301
Multi-level partitioning of the feature space      301
Multilayer feed forward neural networks (MLFFNNs)      550
Multilayer perceptron (MLP)      366 427
Multivalued implication      256
Multivariate normal distribution      26
Mutual information      475
Nash equilibrium      86
Negative synergy      272
Network construction algorithm      369
Network of automata      98
Network optimization by minimal spanning tree      333
Neural networks      231 432 549
Neural pattern recognition      279 286 287
Neuro-fuzzy computing      474
Neurons      13
Niched Pareto optimization      462
Niches between chromosomes      462
Niching      434
Node splitting based on chi-squared statistic      172
Node splitting based on linear discriminant      173
Node splitting criteria      170
Node splitting criteria, exact probability metric      173
Node splitting criteria, GINI index of diversity      173
Node splitting criteria, information gain      171
Node splitting criteria, Kolmogorov — Smirnov distance      173
Node splitting criteria, orthogonality metric      173
Noise model for an image      148
Non-stationary environment      86
Nonlinear frequency scale      543
Nonrandom mislabeling      27
Nonstationary environment      77 87
Nonsupervision      28 29
Object configuration      157
OR neuron      232 233
Ordered weighted averaging (OWA)      436
Orthogonality metric      173
Overtraining      312
Parameterized approximation space      389
Parameterized learning automata (PLA)      99
Pareto (or vector) optimization      458
Pareto optimal frontier      458 462 467
Pareto optimality      457
Parsing      9
Partition matrix      244
Pattern grammar      8
Pattern recognition      2
Pattern recognition, biometric      580
Pattern recognition, KB approach      12
Pattern recognition, supervised      4 116
Pattern recognition, unsupervised      4 116
Perfect supervision      26 28 29
Perfect supervision, basis      35
Performance index      243
Petri net      233
Phonemes      536
Phonetic units      535
Phrase-structure grammar      190 548
Phrase-structure grammar, production or syntactical rules of      8
Picture description grammar      194
Pitch contour      535 553
Pitch period      535
Pixel classification      361
Plex grammar      196
Plosive source      535
Positive region      387
Positive synergy      272
Possibilistic clustering      456
Possibility measure      255
Postsynaptic potential      329
Primitive selection      188
Primitives      8
Prior model for an image      148
Prior model for objects in an image      149
Probabilistic supervision      30
Probability distributions, finite mixtures of      117
Probability distributions, mixtures of      116
Probability of correct classification      82
Probability of misclassification      70 75 92
Procrustes distance      151
Production rules      8
Pronunciation      548
Proportional selection scheme      350
Prosody      549
Pruning      10
Pulse length      304
Pursuit algorithm      78 87 91
Pushdown automaton      193
Quadratic performance index      240
Quadtree decomposition      507 512 514
Quadtree-based segmentation      512 526
Quantum intervals      302
Quantum levels      302 312
Quantum neural networks (QNNs)      300
R-implications      257
Radar signal power      308
Radial basis function (RBF) networks      233 283 433
Radial basis function (RBF) networks, learning methods      284
Random mislabeling      27
Random mislabeling, model for      28
Range gates      304
Rayleigh scatterers      305
Reducts of information systems      394
Redundancy      272
Regression      291
Regression, with neural networks      292
Regular grammar      192
Reinforcement learning      14
Reinforcement signal      14 75 76
Remote sensing      26 27
Residuated implications      257
reverse operator      568
Reversible jump sampling      144
Reward function      80
Reward matrix      87
Reward probability      77 83
Reward probability, estimated      88
Ring operator      570
Robbins — Munro algorithm      74
Rough membership function      387
Rough mereology      389
Rough sets      15
Rough sets, lower approximation of      386
Rough sets, upper approximation of      386
S-implications      257
Sample of a language      203
Schutzenberger theorem      211
Segmental features      535 536
Segmentation of hyperspectral imagery      506
Self-organizing map networks      285
Self-organizing map networks, learning methods      286
Semi-landmarks      154
Shannon's expansion theorem      232
Shapley index      272
Short-time (ST) spectrum      535 543
Short-time spectral envelope      544
Sigmoid activation functions      301
Sigmoid function      302
Sigmoid nonlinearity      240
Signal-to-noise ratio      309
Signal-to-symbol transformation      545
Silhouette of objects in an image      157
Simulated annealing      149
Single point crossover      350
Single spectra      307
skewness      308
Sliding window      515
Sliding window-based segmentation      514 526
Snakes      153 583—585 588
Snakes, time-adaptive      583 585 586
Soft class label      426 436
Soft computing      15 426 474 555
Spatial similarity      513
Speaker recognition      543 544 553
Spectral average      306
Spectral band-value curve      510
Spectral dissimilarity matrix      523
Spectral dissimilarity measure, iterative      522
Spectral dissimilarity measure, local      526
Spectral distance      508
Spectral envelope      543
Spectral signature      506
Spectral width      308
Speech      534
Speech recognition      544 553
Speech recognition, statistical methods for      547
Speech signal      529
Speech signal, waveform      535
Spiking neuron, model      328
Spiking neuron, synaptic learning rule for      329
SPOT image      361
Stationary environment      77
Statistical classifier      510
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте