Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
McShane E.J., Botts T.A. — Real Analysis
McShane E.J., Botts T.A. — Real Analysis



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Real Analysis

Авторы: McShane E.J., Botts T.A.

Аннотация:

Real analysis (traditionally, the theory of functions of a real variable) is a branch of mathematical analysis dealing with the real numbers and real valued functions of a real variable. In particular, it deals with the analytic properties of real functions and sequences, including convergence and limits of sequences of real numbers, the calculus of the real numbers, and continuity, smoothness and related properties of real-valued functions.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1959

Количество страниц: 279

Добавлена в каталог: 12.04.2013

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Lebesgue, H., differentiability of      184
Lebesgue, H., Lebesgue decomposition      178
Lebesgue, H., Lebesgue dominated convergence theorem      140
Lebesgue, H., Lebesgue integral      1261
Lebesgue, H., Lebesgue ladder      161
Lebesgue, H., Lebesgue summable function      133
Left derivative      111
Left limit      39 58
Length of graph of function      75
Limit, double      80
Limit, iterated      80 81
limit, left      39 68
Limit, lower      54
Limit, operations with      35
limit, right      38 58
Limit, upper      54
Line segment      72
Linear bounded      210
Linear function      90
Linear functional      209ff 216ff
Linear operator      209
Linear positive      216
Linear space      202
Linear subspace      202
Lipschitz, R., Lipschitz condition      77 78 80 97 103 112 113 210
Lower bound      20 28
Lower Darboux — Stielijes integral      168
Lower derivate      110
Lower integral      133
Lower limit      54
Lower semicontinuous function      74
Lusin, N. N., Lusin’s theorem      159
Matrix      121
Matrix, diagonal      241
Matrix, hermitian      241
Maximal dement      28
Maximality principle      29ff 251ff
Maximum, attained      71 76
Maximum, relative      117
Mean value theorem      117 121
Mean value theorem, first (for integrals)      151
Mean value theorem, second (for integrals)      192
Measurable function      146ff 161
Measurable set      153ff
Measure      153ff 173ff
Measure, finite      143
Measure, signed      175
Measure, zero      138 145
Mesh, of partition      165
Metric      59 204
Metric, density      188
Metric, space      59ff
Minimum, attained      71 76
Minimum, relative      116 121
Minkowski, H., Minkowski inequality      59 164
Module      202
Modulus of continuity      78
Monomial function      72
Monotone Convergence Theorem      137
Monotone function      58 98ff
Moore, E. H.      82
Natural numbers      4
Negative variation      100 106
Neighborhood, and open sets      44ff
Neighborhood, basic      32 39
Neighborhood, deleted basic      32
Neighborhood, deleted relative      68
Neighborhood, general      44
Neighborhood, Spherical      60
Neutral dement      9
Nikodym, O, Radon — Nikodym theorem      180ff
Nonmeasurable set      157
Nonordered sum      34
Nonoverlapping intervals      108
Norm      204ff
Norm, convergence in      225
Norm, supremum-absolute      204
Norm, uniform      204
Normal space      95 97
Normed linear space      204
Nowhere-differentiable function      113ff
Numbers, cardinal      5
Numbers, complex      161
Numbers, extended real      26
Numbers, natural      4
Numbers, real      24ff
Oldened $n$-tuple      5
Oldened field      14
Oldened pair      2
One-point compactificaiion      80
One-to-one correspondence      4
One-to-one function      4
Open covering      50
Open interval      27
Open set      44ff
Operator, Hermitian (symmetric, self-adjoint)      223 241ff
Operator, linear      209
Order      14 253
Order, convergence      54
Order, partial      27
Ordering      253
Orthogonal complement      224
Orthogonal projection      223
Orthogonal vectors      221
Orthonormal set      227 232
Parseval, M. A., Parseval’s equation      229 232
Partial derivatives      118 125
Partial order      27ff
Partially ordered set      28
Partition      106 165
Peano, O., Peano postulates      6
Permutation      5 122
Perpendicular      221
Plancherel, M., Fourier — Plancherel transform      238
Polynomial function      72
Positive linear functional      216
Positive variation      100 106
PRODUCT      13
Product, cartesian      43
Product, inner      219
Product, topological      42
Projection, orthogonal      223 229
Quadratic functional      224ff
Radon — Nikodym theorem      180ff
Radon, J., Radon — Stieltjes integral      133
Range (of a function)      3
Rational numbers      18
Rational subfield      16
Real number system      24
refinement      40
Reflexive relation      40
Regular convergence      183
Regular topological space      84
Regularity (for measurable sets)      157
Relation      4
Relation, antisymmetric      27
Relation, refinement (among topologies)      40
Relation, reflexive      40
Relation, transitive      40
Relative neighborhoods      68
Relative topologies      49ff
Representation of linear functionals      211
Representation of step function      126
Resolution of the identity (spectral resolutions)      247
Restriction of a function      3
Riemann, B., Riemann and Riemann — Stieltjes integral      165ff
Riemann, B., Riemann sum      165
Riemann, B., Riemann — Lobesgue theorem      151 231
Riesz, F., Riesa — Ficher theorem      228 232
Riesz, F., Riesz representation theorem      216ff
Right derivative      111
Right limit      38 58
Ring, of sets      173
Rolle’s Theorem      117
Saks, S      159
scalar      202
Schwarz, H. A., Cauchy — Buniakowski — Schwarz inequality      59 162
Segment      72
Self-adjoint operator      223
Semicontinuily      73ff
Semicontinuous function      74
Separable      47
SEQUENCE      33
Sequence, convergent      34
Sequence, sum of      33
Series      34
Series, absolutely convergent      136
Series, convergent      34 37
Series, unconditionally convergent      34
Set      1ff
Set, arcwise connected      72
Set, Borel      164
Set, cardinal number of a      5
Set, closed      46ff
Set, compact, SOS Set, convex      222
Set, countable      5
Set, countably infinite      5
Set, dense      21 47
Set, measurable      153ff
Set, open      44ff
Set, orthonormal      227
Set, ring of      173
Set, separable      47 208
Set, star-shaped      72
Set, well-ordered      6 252
Signed measure      175
Simple function      212
Singular function of sets      178
Space, $l_{p}$      202ff
Space, $T_{2}$      40
Space, Banach      204
Space, function      202ff
Space, Hausdorff      40
Space, Hilbert      219ff
Space, linear      202
Space, metric      59ff
Space, normal      95 97
Space, normed linear      204
Space, product      42ff
Space, regular      84
Space, spanned by a set      22
Space, subspace      202
Space, topological      39ff
Spectral resolution      247
Spherical neighborhood      60
Star-shaped set      72
Stieltjes, T. J., Lebesgue — Stieltjes integral      133
Stieltjes, T. J., Lebesgue — Stieltjes integration      126ff
Stieltjes, T. J., Riemann — Stieltjes integral      165ff
STONE, M. H.., Stone — Weierstrass theorem      87ff
Strictly isotone or antitone function      98
Strong convergence      225
Subdirected function      37 38
Subdirection      37
Subfield      10 11
Subfield, rational      16
Subsequence      38
Substitution, in multiple integrals      196ff
Substitution, in simple integrals      193ff
Sum, nonordered      34
Sum, of a series      34
Sum, of elements of a field      13
Summable function      133ff 161
Supremum      20 28
Supremum, essential      203
Symmetric operator      223
Taylor’s Formula      116ff
Tietze, Tietze’s extension theorem      96 97
Topological space      39ff
Topological space, convergence in      40ff
Topological space, functions on a      68ff
Topological space, normal      95 97
Topological space, product      42 52
Topological space, regular      84
topology      39
Topology, equivalent      40 41
Topology, of $L_{p}$ spaces      206ff
Topology, relative      49ff
Total variation      100 106
Transfinite inductive, definition      254
Transfinite inductive, proof      253
Transitive relation      27 40
Tukey, J. W.      30
Tychonoff, A., Tychopoff’s theorem      52 260
U-function      126ff
Ultimately      33 35
Unconditionally convergent series      34
Uniform continuity      77 78 97
Uniform convergence      82 84ff 93 102 225
Uniform norm      204
Uniformly continuous function      78
union      2
Uniqueness of limit in Hausdorff space      41
Uniqueness, for Fourier expansion      233
Uniqueness, for Fourier transform      240
Uniqueness, of complete ordered fields      22ff
Upper and lower Darboux — Stieltjes integrals      168
Upper bound      20 28
Upper Darboux — Stieltjes integral      168
Upper derivate      110
Upper integral      133
Upper limit      54
Upper semicontinuous function      74
Upwardly directed set      28 128
Urysohn, P., Urysohn’s lemma      97
Value, absolute      15
Variation, positive      100 106
Variation, total      100 106
Variations, bounded      99ff 103 106
Variations, negative      100 106
Vector space      202
Vectors      50 202
Vectors, orthogonal      221
Volume      108 126
Weak convergence      225
Weierstrass, K., Bolzano — Weierstrass theorem      53
Weierstrass, K., Stone — Weierstrass theorem      87ff
Well-ordered set      6 252
Welt-ordering theorem      253
Zermelo, E.      29 253
Zorn, M., Zorn’s lemma      251
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте