|
 |
Авторизация |
|
 |
Поиск по указателям |
|
 |
|
 |
|
 |
 |
|
 |
|
Diestel R. — Graph Theory |
|
 |
Предметный указатель |
List, k-list-colourable (see k-choosable)
List-chromatic index 105 108—110 121— 122
List-chromatic number (see Choice number)
Logarithms 1
Loop 25
Lovasz, L. 42 112 115 121 122 167
Luczak, T. 249 250
MacLane, S. 85 92
Mader, W. 11 56—51 61 65 66 118 184 186 187
Magnanti, T.L. 145
Mani, P. 62
Map colouring 95—97 117 120 136
Markov chain 250
Markov’s inequality 233 237 242 244
Marriage theorem 31 33 42 285
Matchable 36
Matching 29—42
Matching and edge colouring 119
Matching in bipartite graphs 29—34 111
Matching in general graphs 34—38
Matching of vertex set 29
Mate, A. 210
Matroid theory 66 93
Max-flow min-cut theorem 125 121 144 145
Maximal 4
Maximal, acyclic graph 12
Maximal, planar graph 80 84 90 92 183 185
Maximal, plane graph 13 80
Maximum degree 5
Maximum degree and chromatic index 103—105
Maximum degree and chromatic number 99
Maximum degree and list-chromatic index 110 122
Maximum degree and radius 9 26
Maximum degree and Ramsey numbers 194 196
Maximum degree, bounded 161 194
Menger, K. 42 50—55 64 144 288
Milgram, A.N. 39
Minimal 4
Minimal, connected graph 12
Minimal, cut 22 88 136
Minimal, k-conncctcd graph 65
Minimal, non-planar graph 90
Minimal, separating set 63
Minimal, set of forbidden minors 274 280 281—282
Minimum degree 5
Minimum degree and average degree 5
Minimum degree and choice number 106
Minimum degree and chromatic number 99 100
Minimum degree and circumference 8
Minimum degree and connectivity 11 65 66
Minimum degree and girth 178 179—180 237
Minimum degree and linkability 171
Minimum degree, forcing Hamilton cycle 214 226
Minimum degree, forcing long cycles 8
Minimum degree, forcing long paths 8 166
Minimum degree, forcing short cycles 179—180 237
Minimum degree, forcing trees 13
Minor 16 19 17
Minor and planarity 80 84 90
Minor and WQO 251—277 (see also Topological minor)
Minor for trees 253 254
Minor of all large 3— or 4—connected graphs 208
Minor of multigraph 26
Minor vs. topological minor 18 19 80
Minor, 182 263
Minor, 183 186
Minor, and 80—84
Minor, 183
Minor, 180 181
Minor, 92 185
Minor, forbidden 181—185 263—277 279 280 281—282
Minor, forced 174 179—186
Minor, infinite 280
Minor, Petersen graph 140
Minor, proof 275—276
Minor, relation 18 274
Minor, theorem 251 274—277 275
Mobius, crown 208
Mobius, ladder 183
Mohar, B. 92 121 281—282
Moment, first (see Markov’s inequality)
Moment, second 242—247
Monochromatic (in Ramsey theory), (vertex) set 191—193
Monochromatic (in Ramsey theory), induced subgraph 196—206
Monochromatic (in Ramsey theory), subgraph 191 193—196
Multigraph 25 26
Multigraph, list chromatic index of 122
Multigraph, plane 87
Multiple edge 25
Murty, U.S.R. 228
Nash — Williams, C.St.J.A. 58 60 66 280
Neighbour 3 4
Nesetfil, J. 210 211
Network 125—128
Node (vertex) 2
Normal tree 13 14 27 139 144 296
Nowhere, dense 61
Nowhere, zero 128 146
NULL (see Empty)
Obstruction to small tree-width 258 260 264 265 280 281
octahedron 11 15
Odd, component 34
Odd, cycle 15 99 117 290
Odd, degree 5
ON 2
One-factor theorem 35 66
Oporowski, B. 208
Order of a bramble 258
Order of a graph 2
Order of a mesh or premesh 265
Order of deletion/contraction 17
Order, partial 13 18 27 40 41 120 277
Order, quasi 251—252 277—278
Order, tree 13 27
Order, well-quasi 251—253 275 277 278 280
Orientable surface 280
Orientable surface, plane as 137
Orientation 25 108 145 289
Oriented graph 25
Orlin, J.B. 145
Outer face 70 76—77
Outerplanar 91
Oxley, J.G. 93 208
Palmer, E.M. 249
Parallel, edges 25
Parity 5 34 37 227
Part of tree-decomposition 255
Partially ordered set 40 41 42
Partition 1 60 191
Pasting 111 182 183 185 261
Path 6—9
Path, A — B-path 7 50—55
Path, a-b—path 7 55
Path, alternating 29 32
Path, between given pairs of vertices 61—63 66 170
Path, cover 39—40 285
Path, directed 39
Path, disjoint paths 39 50—55
Path, edge-disjoint 55 57 58
Path, H-path 7 44—45 56—57 64 65 66
Path, independent paths 7 55 56—57 283
Path, induced 207
Path, length 6
Path, linkage 61—63 66 170 172
Path, long 8
Path-decomposition 279
Path-hamiltonian sequence 218
Path-width 279 281
Paths 293
Pelikan, J. 185
| Perfect 111—117 119—120 122
Perfect, graph conjecture 117
Perfect, graph theorem 112 115 117 122
Perfect, matching (see 1-factor)
Petersen graph 140—141
Petersen, J. 33 36
Physics 146
Piecewise linear 67
Planar 80—89 274
Planar, embedding 76 80—93
Planarity criteria, Kuratowski 84
Planarity criteria, MacLane 85
Planarity criteria, Tutte 86
Planarity criteria, Whitney 89
Plane, dual 87
Plane, duality 87—89 91 136—139 288
Plane, graph 70—76
Plane, multigraph 57—89 136—139
Plane, triangulation 73 75 261
Plummer, M.D. 42
Point (vertex) 2
Pointwise greater 216
Polygon 68
Polygonal arc 68 69
Posa, L. 197 226
Power of a graph 218
PRECISION 296
Premesh 265
Probabilistic method 229 235—238 249
Projective plane 275 281
Promel, H.J. 117 122
Property 238
Property of almost all graphs 238—241 247— 248
Property, hereditary 263
Property, increasing 241
Pseudo-random graph 210
Pym, J.S. 66
Quasi-ordering 251—252 277—278
r-partite 14
RADIUS 9
Radius and diameter 9 26
Radius and maximum degree 9 26
Rado, R. 210
Rado’s selection lemma 210
Ramsey graph 197
Ramsey theory 189 208
Ramsey theory and connectivity 207 208
Ramsey theory, evolution 241
Ramsey theory, indicator r.v. 234 295
Ramsey theory, induced 196—206
Ramsey theory, infinite 248
Ramsey theory, process 250
Ramsey theory, random graph 179 194 229—250 231
Ramsey theory, random variable 233
Ramsey theory, reducible configuration 121
Ramsey theory, uniform model 250
Ramsey, F.P. 190—193
Ramsey, numbers 191 193—194 209 210 232
Ramsey-minimal 196
Reed, B.A. 281
Refining a partition 1 155 159
Region 55—70
Region on 70
Regular 5 33 226
Regularity, graph 161
Renyi, A. 243 249
Rfha, S. 228
Richardson, M. 119
Rigid-circuit (see Chordal)
Robertson, N. 66 121 183 186 257 264 275 281
Rodl, V. 167 194 197 211
Ronyai, L. 167
Root 13
Rooted tree 13 253 278
Rothschild, B.L. 210
Royle, G.F. 28
Ruciriski, A. 249
Sanders, D.P. 121
Sarkozy, G.N. 226
Saturated (see Edge-maximal)
Schelp, R.H. 210
Schoenflies, A.M. 70
Schrijver, A. 145
Schur, I 209
Scott, A.D. 167 178 209
Second moment 242 247
Self-minor conjecture 280
Separate a graph 10 50 55 56
Separate the plane 68
Separating set 10
Sequential colouring (see Greedy algorithm)
Series-parallel 185
Set system (see Hypergraph)
Seymour, P.D. 66 92 121 141 183 186 187 226 257 258 264 275 280 281
Shift-graph 209
Simonovits, M. 166 167 210
Simple, basis 85 92—93
Simple, graph 26
Simplicial tree-decomposition 261 275 279 281
Sink 125
Six-flow theorem 141
Snark 141
Snark, planar 141 145 215
Sos, V. 152 166 167
Source 125
Spanned subgraph 3
Spanning, edge disjoint 58—60
Spanning, number of 248
Spanning, subgraph 3
Spanning, trees 13 14
Sparse graphs 147 169 185 194
Spencer, J.H. 210 249
Sperner’s lemma 41
Square of graph 218
Square, Latin 119
Stability number (see Independence)
Stable set 3
Standard basis 20
Star 15 166 196
Star, induced 207
Star-shape 287
Steger, A. 117 122
Steinitz, E. 92
Stereographic projection 69
Stone, A.H. 151 160
Straight line segment 68
Strong core 289
Subcontraction (see Minor)
Subdividing vertex 18
Subdivision 18
Subgraph 3
Subgraph of all large k-connected graphs 207—208
Subgraph of high connectivity 11
Subgraph of large minimum degree 5—6 99 118
Subgraph, forced by edge density 147—164
Subgraph, induced 3
Sum of edge sets 20
Sum of flows 133
Supergraph 3
Symmetric difference 20 29 30 40 53
System of distinct representatives 41
Szabo, T. 167
Szekeres, G. 208 209
Szemeredi, E. 154 170 186 194 226
tail (see Initial vertex)
Tait, P.G. 121 227—228
Tangle 281
Tarsi, M. 121
Terminal vertex 25
Theorem 150 195
|
|
 |
Реклама |
 |
|
|