Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Gruber M.H.J. — Regression Estimators: A Comparative Study
Gruber M.H.J. — Regression Estimators: A Comparative Study



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Regression Estimators: A Comparative Study

Автор: Gruber M.H.J.

Аннотация:

An examination of mathematical formulations of ridge-regression-type estimators points to a curious observation: estimators can be derived by both Bayesian and Frequentist methods. In this updated and expanded edition of his 1990 treatise on the subject, Marvin H. J. Gruber presents, compares, and contrasts the development and properties of ridge-type estimators from these two philosophically different points of view. The book is organized into five sections. Part I gives a historical survey of the literature and summarizes basic ideas in matrix theory and statistical decision theory. Part II explores the mathematical relationships between estimators from both Bayesian and Frequentist points of view. Part III considers the efficiency of estimators with and without averaging over a prior distribution. Part IV applies the methods and results discussed in the previous two sections to the Kalman Filter, analysis of variance models, and penalized splines. Part V surveys recent developments in the field. These include efficiencies of ridge-type estimators for loss functions other than squared error loss functions and applications to information geometry. Gruber also includes an updated historical survey and bibliography. With more than 150 exercises, Regression Estimators is a valuable resource for graduate students and professional statisticians.


Язык: en

Рубрика: Математика/

Серия: Сделано в холле

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2-nd edition

Год издания: 2010

Количество страниц: 424

Добавлена в каталог: 02.10.2012

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Lagrange multiplier      6 74 77 85 90 129 237 238 289
Lauter, H.      20
Lauterbach, J.      15
Lawless, J.F.      24 26
Least favorable prior distribution      18
Least square estimator      4 69 70 82 303 305
Least square estimator for penalized splines      292 294—295
Least square estimator for the Kalman Filter      228—234
Least square estimator, ANOVA      253 256—257 267—268
Least square estimator, combined with other estimators      307—311 322 323
Least square estimator, comparison with Bayes estimator      118 122 153 169 171 174—179 193 201 203 214 220
Least square estimator, comparison with contraction estimator      141
Least square estimator, comparison with mixed estimator      104 105 155 161 171 188 189 201 307
Least square estimator, comparison with other estimators averaging over LINEX loss function      337 339 340—352
Least square estimator, comparison with other estimators averaging over Zellner's balanced loss function      316—317 319 324
Least square estimator, comparison with ridge estimator      129 237—239 273 341 342 383 384
Least square estimator, comparison with the Liu estimator      112
Least square estimator, derivation of      4—5
Least square estimator, distance from other estimators      374 383 384—387 389
Least square estimator, examples      9 72 79 124 157 298
Least square estimator, properties of      70—76 92 111 130 146 165
Lee, J.      31
Levy, M.      27 325
Lewis, F.L.      224 245
Lindley, D.V.      13 279
Linear admissible      17 144—146
linear combination      74 119 157 261 269 278 303 358
Linear estimator, admissible      12 21
Linear estimator, Bayes      12 18 24 69 70 91 93 145 153 154 165 208
Linear estimator, Bayes and empirical Bayes      233 234 239 248 263—267 273—278
Linear estimator, Bayes and penalized splines      291 292 296
Linear estimator, Bayes and the Rao distance      369
Linear estimator, Bayes for the LINEX loss function      338—340
Linear estimator, Bayes for Zellner's balanced loss function      304 307 315 324 338—340 369
Linear estimator, heterogeneous      14 17
Linear estimator, minimax      24 30 69 85 105 147
Linear restriction      16 18
Linnik, Y.V.      91
Lipovetsky, S.      29
Liski, E.P.      17
Liu, D.      31
Liu, K.      19 22 23 28 29 30 31 111 112 115 116 130 146 148 165 170 171 180 181 199
Loss functions, balanced      4 19 23 25 31—33 49 135 136 141 142 146 303—324
Loss functions, LINEX      4 15 20 22 23 26 27 32 49 135 136 143—144 146
Loss functions, matrix      58 59 142—143 303 318—320
Loss functions, predictive      14 111 141—142 196 198 303 304 318 320—324
Loss functions, quadratic      13 30 32 57—59 70 111 135—138 167 192 196—201 327 336
Loss functions, squared error      19 22 27 49 53 143—145 303 325 326 333 335 337—339 342 343 345
Lowerre, J.M.      11
Lu, Y.      31
Lynn, M.J.      24
Markiewicz, A.      21
Marquardt, D.W.      11
Maruyama, Y.      27
Mason, R.L.      20
Mathematical formulation of the Kalman Filter      225—228
Matrix loss function      58 59 142—143 303 318—320
Maximum likelihood estimator      10 26 34 54
Maximum likelihood estimator, inadmissibility of      53—56
Mayer, L.W.      11 23 28 29 110 165 207 310 376 377 382 383
McCabe, D.S.      283 284
McCulloch, C.E.      24
McDonald, G.C.      13 22 28
McKean, J.W.      143
Measures of efficiency of estimators      32 33 135—146 147
Measures of efficiency, average bias      150
Measures of efficiency, average MSE      13 32 50 52 136 138
Measures of efficiency, average MSE of Bayes estimator      153—155
Measures of efficiency, average MSE of contraction estimator      162—164
Measures of efficiency, average MSE of empirical Bayes estimator      265 276 278—282
Measures of efficiency, average MSE of Kalman Filter      239—242
Measures of efficiency, average MSE of Liu estimator      165
Measures of efficiency, average variance      147 151—152
Measures of efficiency, bias      9 13 17 18 20 27—30 52 111 135 137—138 148 168—170 196—198 336 337
Measures of efficiency, conditional MSE      32 135—137 167—201 202 209
Measures of efficiency, conditional MSE of Bayes estimator      52 139 214 215 218
Measures of efficiency, conditional MSE of least square estimator      148 218
Measures of efficiency, conditional MSE of ridge-type estimator      60 139
Measures of efficiency, conditional variance      137 148 149 168 195 197
Measures of efficiency, LINEX risk      326 331 334
Measures of efficiency, MSE averaging over a quadratic loss function      135 137 186
Measures of efficiency, squared bias      135 137 138 168—170 196 316
Measures of efficiency, variance of posterior distribution      50—52 57 138 151 158 333 336
Measures of efficiency, variance of prior distribution      151 369 372
Measures of efficiency, weighted bias      18 197 198
Measures of efficiency, weighted conditional variance      197
Measures of efficiency, weighted squared bias      196
Mehta, J.S.      14
Meinhold, N.D.      223 244
Mickens, R.E.      249
Minimax estimator      3 10 12—16 32 35 50 69
Minimax estimator and ridge-type estimators      3 109—116
Minimax estimator and the BLUR      296
Minimax estimator and the Kalman Filter      235—237
Minimax estimator and Zellner's balanced loss function      309—310
Minimax estimator, comparison with other estimators      93 94 105
Minimax estimator, efficiency of      13 47 165 208—210 220 224
Minimum variance unbiased linear estimator (MVUE)      74 89 116 117 130
Mitchell, A.F.S.      19 366 367
Mitra, S.K.      48
Mixed estimators      3 10 13 14 17 18 22 25 26 28 29 224 304 336 352 355
Mixed estimators, comparison with Bayes estimator      103—109
Mixed estimators, comparison with BLUR      295—297
Mixed estimators, comparison with least square estimator      228—234
Mixed estimators, derivation of      79—81
Mixed estimators, distance between      384—387 389
Mixed estimators, examples of      82—85 106—109 172—174 212—213
Mixed estimators, MSE of      155—157 167 171—174 187—192 201 203 210—213
Mixed estimators, variance of      147 160—161
Mixed model      18 271 272 291
Mixture of Bayes estimators      217—220
Mom, A.      30
Montano, R.      19
Montgomery, D.C.      22 23 254 259 271
Moore — Penrose inverse      11 42—48 98 107 131 192 256 257 297 305 310
Moore, G.P.      283 284
Morris, K.      253 267
MSE (mean square error) for incorrect prior assumptions      202—220
MSE (mean square error) of mixed estimator neglecting additional assumptions      187—192
MSE (mean square error) of parametric functions      12 13 194
MSE (mean square error), average MSE      136 138 147—149 205
MSE (mean square error), average MSE and average variance      151—152
MSE (mean square error), average MSE averaging over the LINEX loss function      336—340
MSE (mean square error), average MSE averaging over Zellner's balanced loss function      312—315
MSE (mean square error), average MSE compared to conditional MSE      179—181 215
MSE (mean square error), average MSE of BE      32 50 52 138 153—155
MSE (mean square error), average MSE of different estimators compared      13 157—165 215
MSE (mean square error), average MSE of EBE      265 276 278—282
MSE (mean square error), average MSE of Kalman Filter      239—242
MSE (mean square error), conditional MSE      135—139 148 167—201 209
MSE (mean square error), conditional MSE and average MSE compared      179—180
MSE (mean square error), conditional MSE and mixtures of BE      214 215 218
MSE (mean square error), conditional MSE averaging over quadratic loss functions      196—201
MSE (mean square error), conditional MSE of BE and LS compared      60 61 174—179 181—187
MSE (mean square error), predictive      17 198 200
MSE averaging over quadratic loss functions, individual      11 59 198 200 317
MSE averaging over quadratic loss functions, predictive      17 198 200 201
MSE averaging over quadratic loss functions, total      9 24 135 196 198 199 201
MSE neglecting prior assumptions      32 56 167—201
MSE, comparisons of BE (average)      32 66 157—162
MSE, comparisons of BE (conditional)      174 175—187 192—194
MSE, comparisons of mixed estimators (variance)      187—192
MSE, comparisons of ridge-type estimators and LS      12 13 15 162—165 167
MSE, expressions for Bayes estimator      153—155 168—171
MSE, expressions for mixed estimator      155—157 171—174
Multicollinear data      3 5 6 10 13 14 16 17 19 28 30 355 383
Multicollinear data, exact      5
Multicollinear data, near      5
Munoz, M.      19
Nagaoka, H.      19 355
Namba, A.      23
Nishimura, T.      224
Nomura, M.      17
Non-estimable parametric function      71 149
Non-full rank, model      11—15 20—22 30 34 69 74 79 89 94 95 109 130 224 229 232—234 256
Non-full rank, prior dispersion      90 98—100 109—111 130 232—234
Non-full rank, prior ellipsoid matrix      26 86
Non-negative-definite matrix      35—38 56 58 59 137 164 175 188 206 289 294
Nonsingular matrix      41 43 45 103 210
Normal equation      5 7 34 72 73 79 254 260 267 273
Normal, population      19 26 50 56 326 328 331—334 336 337
Normal, prior distribution      31 50 245 371 374 375
Normal, random variable      259
Nyquist, H.      19 171
Obenchain, R.L.      13 15
Observation equation      244
Oh, H.S.      31
Ohtani, K.      20 344 347 352
Olman, V.      20 22
One-way ANOVA model      252 256 257—263
One-way classification      252 256 257—263
Optimization problem      77—79 85 89 90 93 96 116 168 217 220 232 237 257
Optimum scalar k or diagonal matrix K for LINEX loss function      343—344
Optimum scalar k or diagonal matrix K, squared error loss function      342—343
Optimum scalar k or diagonal matrix K, Zellner's balanced loss function      317—318
Ordering of matrices      35—38
Ordinary ridge regression estimator      21 28 69 82 110 111 138 139 148 165 170 178 180 183 216 250 298 371 383
Orthogonal contrast      254
Orthogonal matrix      45 71 82 111 121 124 190 192 311
Output equation      246
Owen, A.      29
Ozkale, S.      29 30 111
Palm, R.      20
Parker, D.F.      21 30 110 116
Patterned matrices      35 64—65 253 274
Peele, L.      13
Penalized spline      4 14 24 31 33 289—290 294—295 299
Pfeffermann, D.      11
Pliskin, J.L.      15
Pordzik, P.R.      18
Positive-definite matrix      36 60 95 99 210 235 248 251 296 340 360
Positive-semidefinite matrix      35—38 60—63 65 77 95 117 130 131 182 185 187 196 308
Posterior distribution, computation of      49—53 335
Posterior distribution, distance between      354 355 369—389
Posterior distribution, mean of      34 279 333 336
Posterior distribution, variance of      57 138 151 158 333 336
Posterior mean      334 336
Posterior variance      152 336
Prediction error      12
Pretest estimator      25 219 266
Price, M.J.      13
Principal minor      35 36
Prior, assumptions      56 136—141 148 165—167 171—174 188—192 201—209 224 226 242—244 263 273 306
Prior, dispersion      14 101—103 117—120 157—159 165 174 179 185 193—195 197 248 310 369
Prior, distribution      13 21 31 49 52 91 116 126 147 151 202 214 333 354
Prior, information      3 4 12 20 21 34 51 94 136 156 167 168 197 239 253 263
Prior, mean      15 70 88 98 105 116 120 139 155 157 158 167 174 214 314 336 370—373
Prior, parameters      31 85 147 157 177 253
Prior, variance      151 369 372
Quadratic form      20 22 35 36 213 270
Quenouille, M.      16 18
Ramanathan, T.V.      30
Random sample      49 50 52 56 75 152 328 335
Random-effects model      262 271 297
Randomized block design      252 253 267 270
Rao, C.R.      48 60 64 70 76 89 91 94 95 96 109 157 178 180 218 295 354
Rao, J.N.K.      24
Rao, P S.R.S.      24
Rayner, R.K.      19
Recursive Bayes estimation      224
Recursive least square estimator      228—234
Recursive ridge regression      248—251
Reflected loss function      332
Relative savings loss      253 266
Ren, C.      26
Reparameterization of a non-full-rank model to one of full-rank      121 123 125 127 131 185
Ridge regression estimators      4 7 12 13 15 17—20 22—24 27—30 95 106 110 178
Ridge-type estimators and LINEX loss      342—352
Ridge-type estimators and penalized splines      283—299
Ridge-type estimators as special cases of more general classes of estimators      94 96 98 109—116 248—251
Ridge-type estimators, admissible      53 134 144—146
Ridge-type estimators, comparison of efficiency      60 135 162—163 165 176—179 181—182 194—196 207—208 342—352
Ridge-type estimators, contraction estimators      110 154 169 207—208
Ridge-type estimators, distance between      33 376—379 382—384
Ridge-type estimators, generalized contraction estimators      111 138—339
Ridge-type estimators, generalized ridge estimators      109 129—130
Ridge-type estimators, historical prospective      11 12 13 17 21
Ridge-type estimators, Liu (two parameter)      111—112 165 170
Ridge-type estimators, need for the study of      4—10
Riquan, Z.      31
Robinson, G.K.      18 24
Robustness of an estimator with respect to prior information      14 15 32 202 204
Robustness of assumptions      224 242—244
Robustness of prior information      16 32
Robustness of the Kalman Filter with respect to initial prior assumptions      224 242—244
Ruppert, D.W.      283 289 298
Ryan, T.P.      13
Sakar, N.      21
Saleh, A.K.M.E.      26 219 266
Sample information      82 83
Santos, S.      19
Saxena, A.      14
Schaffrin, B.      25 31
Schipp, B.G.      16
Searle, S.R.      24 71
Shao, P.Y.S.      55
Shatzoff, M.      9
Shrinkage estimators      4 11 12 22 27 29 377
Shukur, G.      27
Signal-to-noise ratio      30 170 196—197
Significance tests      253 266 288
Silvapulle, M.J.      18
Silvey, S.D.      10
Simulation studies      9 12 17 30 31
Singh, B.      17 30
Singpurwalla, R.J.      223 244
Singular value decomposition (SVD) and Bayes, mixed, and ridge-type estimators      113—114 123 125—128 158—159 311
Singular value decomposition (SVD) and estimable parametric functions      72 255 256
Singular value decomposition (SVD) for generalized inverses      34 43—48
Singular value decomposition (SVD) for the exchange of sample and prior in formation      106—108 191
Singular value decomposition (SVD) in distance functions      367 368
Singular value decomposition (SVD) in establishing important results      58 62 97 104 121 218
Singular value decomposition (SVD), computation of      38—41
Smith, A.F.M.      11 13
Soong, T.T.      224
Sorenson, H.W.      223
Space      41 278 357—359
Speed, E.M.      24
Splines      4 14 24 25 27 31 33 283—299
Springer, E.A.      27 325 332
Srivastava, M.S.      26 27
Stahlecker, P.      15 16 22
Stapasson, J.      19
Starke, H.R.      31
Stein estimators      10 12 20 23 27 53—55 94 110 140 219 251 259 265 277 278
Stein, C.      10 12 13 15 20 22 23 25 27 34 54 55 94 110 111 140 219 251 259 265 275 277 278 322
Steinour, H.H.      31
Stevens, P.J.      223
Stochastic prior constraints      22 121 211
Stochastic prior information      82—84 103—106 137 210
Strawderman, W.E.      27 55
Styan, G.      28
subspace      41 126 127 128 131
Sufficiency principle      279
Sufficient statistic      21 279
Sum of squares      29 75 84
Sum of squares, between      258
Sum of squares, block      270
Sum of squares, error      253 258 264 270 290 304
Sum of squares, regression      258
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте