Авторизация 
		         
		        
					
 
		          
		        
			         
		          
		        
			        Поиск по указателям 
		         
		        
			        
					 
				        
					
			         
		          
		        
			         
		          
			
			         
		         
       		 
			         
		          
                
                    
                        
                     
                  
		
			         
		          
		        
			         
		          
		
            
	     
	    
	     
	    
	    
            
		 
                
                    Laywine C.F., Mullen G.L. — Discrete mathematics using Latin squares 
                  
                
                    
                        
                            
                                
                                    Обсудите книгу на научном форуме      
 Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter 
 
                                 
                                
                                    Название:   Discrete mathematics using Latin squares 
Авторы:   Laywine C.F., Mullen G.L.  
Аннотация:  An intuitive and accessible approach to discrete mathematics using Latin squares In the past two decades, researchers have discovered a range of uses for Latin squares that go beyond standard mathematics. People working in the fields of science, engineering, statistics, and even computer science all stand to benefit from a working knowledge of Latin squares. Discrete Mathematics Using Latin Squares is the
 only upper-level college textbook/professional reference that fully engages the subject and its many important applications. Mixing theoretical basics, such as the construction of orthogonal Latin squares, with numerous practical examples, proofs, and exercises, this text/reference offers an extensive and well-rounded treatment of the topic. Its flexible design encourages readers to group chapters according to their interests, whether they be purely mathematical or mostly applied. Other features include: An entirely new approach to discrete mathematics, from basic properties and generalizations to unusual applications 16 self-contained chapters that can be grouped for custom use Coverage of various uses of Latin squares, from computer systems to tennis and golf tournament design An extensive range of exercises, from routine problems to proofs of theorems Extended coverage of basic algebra in an appendix filled with corresponding material for further investigation. Written by two leading authorities who have published extensively in the field, Discrete Mathematics Using Latin Squares is an easy-to-use academic and professional reference.
 
Язык:   
Рубрика:  Математика /Алгебра /Комбинаторика / 
Статус предметного указателя:  Готов указатель с номерами страниц  
ed2k:   ed2k stats  
Год издания:  1998 
Количество страниц:  326 
Добавлена в каталог:  11.03.2005 
Операции:  Положить на полку  |
	 
	Скопировать ссылку для форума  | Скопировать ID 
                                 
                             
                        
                     
                 
                                                                
			         
	          
                
                    Предметный указатель 
                  
                
                    
                        (t,m,s)-Nets        241—254    
(t,m,s)-Nets and coding theory        250    
(t,m,s)-Nets and error-correcting codes        250   254    
(t,m,s)-Nets and MOLS        244—250   253   254    
1-factorization and 1-factor        107   126   286   287    
Abbadi, A.E.        256   264   265    
Abdel-Ghaffar, K.A.S.        256   257   264   265    
Abel, R.J.        27   37   39    
Adleman, L.        237—240    
Affine geometries        161—166   171   173    
Affine geometries, k-flats defined        161    
Affine plant(s)        68—70    
Affine plant(s), algebraic derivation        133—136    
Affine plant(s), axioms, defining        131    
Affine plant(s), desarguesian        143—146    
Affine plant(s), nondesarguesian        146—150    
Affine plant(s), order of finite        132    
Agrippa, C.        175    
Albert, A.A.        152    
Algebraic background        269—277    
Alspach, B.        180   181    
Andrews, G.E.        269   278    
Andrews, W.S.        179—181    
anova        188   201.    
Appd, H.        106   128    
Archdeacon, D.S.        117   128    
Arkin, J.        58   62    
Axial classes        289    
Background, algebraic        269—277    
Bain, L.        188   204    
Balanced incomplete block design        153   154    
Ball, R.        179   181    
Batten, L.M.        145   152    
Behzad, M.        106   128    
Belyavskaya, G.B.        257   264   265    
Berge, C.        93    
Beth, T.        165   172   173    
Bipartite graph        287    
Blake, I.F.        171   173    
Bloch, N.J.        104    
Bose 1938 equivalence        137   152    
Bose, R.C.        8   13   17   20   26   37—39   70   101   137   152   158   169   173   226    
Brack, R.H.        33   38   39   123   128   152    
Brayton, R.K.        33   38—39    
Brock (geometric) nets        247    
Brock — Ryser theorem        152    
Brouwer, A.E.        27   31   37   39   213   215   219   220   226    
Brouwer. table from        213   215   219   220   226    
Bryant, V.        109   128    
Bye-boards        182    
Casanova, and magic squares        176    
Cayley (multiplication) table        95   103    
Cayley theorem        96    
Cayley, A.        96    
Characterizing graphs with Hamilton cycles, problem of        106    
Chartrand, G.        106   128    
Childs, L.        269   278    
Classes, axial        289    
Clayman, A.T.        244   254    
Code(s) from MOFS        215   226    
Code(s) from MOLS        209—213    
Code(s), and latin squares        205—226    
Code(s), binary        205    
Code(s), constant weight        217   218    
Code(s), error-correcting        123   205—226    
Code(s), from orthogonal hypercubes        216    
Code(s), Golomb — Posner MDS        213   216   226    
Code(s), linear        206    
Code(s), linear, nonlinear        208    
Code(s), linear, rate of        208    
Code(s), maximum distance separable (MDS), defined        212   213    
Code(s), optimal        213—221    
Code(s), protective        219    
Code(s), q-ary        205    
Code(s), repetition, of length it        209   210    
Code(s), ternary        205    
Code(s), two weight        219    
Code(s), weight (wt)        207    
Cohen, D.        117   128    
Colboutn, C.J.        27   37   39   152   255   258—262   264   265    
Column effects        190    
Commutative ring        270    
Cooper, J.        239    
Coppersmith, D.        33   38   39    
Craig, A.T.        188   204    
Critical set(s)        231   238   239   293    
Critical set(s) and   latin square       293    
Critical set(s), minimal        231   238   239    
Cryptology and latin squares        228—239    
Cryptology and latin squares, ciphertexts        228    
Cryptology and latin squares, cryptology, cryptography, and cryptoanalysis defined        228    
Cryptology and latin squares, enciphering and deciphering        228    
Cryptology and latin squares, secret sharing schemes        230—233    
Cryptology and latin squares, secret sharing schemes, multilevel        232    
Cryptology and latin squares, secret sharing schemes, shadows of secret key        230    
Cryptology and latin squares, secret sharing schemes, shares of secret key        230    
Dean, R.A.        104    
Deficiency of a set of MOLS        33   122    
Dembowtki, P.        152    
Denes, J.        8   16   17   22   23   33   36—39   43   62   70   97   101   102   104   105   116   117   128   146   152   175   179—181   184—186   223   226   247   253   254   257   263—265    
Derangement        78    
Desargues configuration        143—146    
Desargues configuration, affine formulation        146    
Desargues configuration, defined        143    
Desargues theorem        144   145    
Desarguesian plane(s)        172    
Desarguesian set of MOLS        22   35    
Desarguesian set of MOLS, construction of        21   22    
Designs, affine resolvable        155   171—173    
Designs, balanced incomplete block        153—155    
Designs, resolvable        155    
Designs, symmetric        155    
Designs, transversal        27—32   37    
Diffie, W.        234   235   239    
Digital signature        237    
Diirer, Melencolia I engraving        175   176    
Dinitz, J.H.        27   37   39   117   128   152   186   187   255   260—262   264   265    
Discordant permutation        77    
Discrete logarithm cryptosystems        234—239    
Discrete logarithm cryptosystems, no-key        236   237    
Discrete logarithm cryptosystems, public-key        237   238    
Discrete logarithm cryptosystems, RSA (Rivest, Shamir, and Adleman)        237—240    
Discrete logarithm cryptosystems, RSA (Rivest, Shamir, and Adleman), and Euler's function        237   271    
Discrete logarithm cryptosystems, three pas system        236   237    
Discrete logarithm problem        103   234   239    
Division algorithm        269    
Donovan, D.        239    
Dougherty, S.T.        5       37   39    
Du, B.       179   181    
Ecker, A.        263—265    
Elementary intervals        242   243    
Engdhardt, M.        188   204    
Erickson, D.L.        259   264   265    
Error-correcting codes        See Code(s)   error-correcting    
Etzion, T.        117   128    
Euclidean plane(s)        131   135   136   143    
Euler 36-officer problem        5—8   11   23   58   64   67   101   104   122   127   188    
Euler bound        58—60    
Euler circuit        119   120    
Euler conjecture        8   23   26   27   37   58   101   104    
Euler solution of Koenigsberg bridge problem        106   127    
Euler, L.        5—8   11   23   26   27   37   39   58—60   101   104   106   127   128    
Evans, T.        16   17    
Fennat last theorem        106    
Fennat primes        291    
Fields and irreducible polynomials        272   273   277   278   280    
fields, defined        270    
Fields, finite        271   278.    
Fields, Galois        273    
Fields, properties of        274    
Finite field        20   21   270—274   278    
Finite field, primitive dements        274   277   291    
Finizio, N.J.        226    
Four color problem        106   126    
Fractional replication plane(s)        226    
Fraleigh, J.B.        269   278    
Frequency square(s)        63—70    
Frequency square(s), constant frequency        64    
Frequency square(s), defined        63    
Frequency square(s), nonconstant frequency        70    
Frequency square(s), orthogonal sets of        63   64    
Freund, J.E.        188   189   193   204    
Frolov, M.        97   104   105    
Gallian, J.A.        269   278    
Galois field        273    
Gardiner, M.        181    
Generalized orthogonal array        251    
Generator matrices        214—217   292    
Geometric (Brock) nets        247    
Geometric hypercubes, defined        163    
Golf design        13    
Golomb.S.W.        213   216   226    
Graphs (and latin squares)        106—128    
Graphs (and latin squares), adjacency matrix        112    
Graphs (and latin squares), bipartite        107   126    
Graphs (and latin squares), edges        106    
Graphs (and latin squares), l-factori(zation)        107   126   286   287    
Graphs (and latin squares), monochromatic 1-factor        107    
Graphs (and latin squares), net        122   126    
Graphs (and latin squares), pseudo-net        122    
Graphs (and latin squares), regular        121    
Graphs (and latin squares), strongly regular        121—123    
Graphs (and latin squares), vertices        106    
Grosswald, E.        269   278    
Groups (and latin squares)        94—104    
Groups (and latin squares), abelian        94    
Groups (and latin squares), associative        94    
Groups (and latin squares), commutative        94    
Groups (and latin squares), cyclic        94    
Groups (and latin squares), defined        94    
Groups (and latin squares), examples of        94    
Groups (and latin squares), finite        94    
Groups (and latin squares), generator        94    
Groups (and latin squares), identity element        94    
Groups (and latin squares), inverse element        94    
Groups (and latin squares), order n        94    
Groups (and latin squares), properties of        94    
Haken, W.        106   128    
Hall marriage theorem        108   109   287    
Hall plane(s)        146   147   151   172    
Hall, M.        146   151   152    
Hall, P.        109   128    
Halmos, P.R.        109   128    
Hamilton circuit(s)        118   119   126   287    
Hamilton cycles, characterizing graphs with        106    
Hamilton, J.R.        89   93    
Hamiltonian path        115   116   126   287    
Hamming (sphere-packing) bound        211   224    
Hamming distance        206   226   257    
Hamming, R.W.        206   226—227    
Hansen, T.        273   278    
Hedayat, A.        45   62—64   70   170   173    
Heinrich, K.        180   181   258   264   265    
Hellman, M.E.        234   235   239    
Herstein, I.N.        96   104   105   269   278    
Hill, R.        205   209   225   227    
Hinkelmann, K.        199   204    
Hoehler definition of orthogonality        61    
Hoehler, P.        61   62    
Hoffman, A.J.        33   38   39    
Hogg, R.V.        188   204    
Homer, W.W.        179   181    
Howell master sheets        182. See also Room squares    
Hughes polynomials        151   152    
Hughes, D.R.        151   152    
Hungerford, T.W.        104   105   269   278    
Hypercube(s), algorithm for construction from latin squares        294    
Hypercube(s), d-dimensional        43    
Hypercube(s), from latin squares        294    
Hypercube(s), geometric defined        163    
Hypercube(s), Hoehler's definition of        61    
Hypercube(s), latin        43   44    
Hypercube(s), nonlatin        44    
Hyperplanes        171—173    
Hyperrectangles        70    
Integers, congruent modulo n        269    
Integers, ring of, modulo n        270    
Intervals, elementary        242   243    
Irreducible polynomials        272   273   277   278   280    
Jungnickel, D.        165   172   173    
Kaplansky, I.        93    
Karteszi, F.        152    
Keedwell, A.D.        8   16   17   22   23   33   36—39   43   62   70   97   104   116   117   128   146   152   175   179—181   184—186   223   226   247   253   254   257   263—265    
Kemptborne, O.        199   204    
Kim, K.        258   264   265    
Kimberiey, M E.        173    
Kishen, K.        43   48   62    
Knut — Vik designs (pandiagonal latin squares)        179    
Koblitz, N.        239   240    
Koch, J.        106   128    
Koenigsberg bridge problem        106   127    
Kolesova, G.        22   39   146   151   152    
Kronecker product and hypercubes        57   58    
Kronecker product and MOLS        23—27   124   125   280—282    
Kumar, V.K.P.        258   264   265    
Lagrange interpolation formula        20   274   296    
Lagrange interpolation formula and polynomial representation        274    
Lagrange theorem        38    
Lam, C.W.R.        22   38   39   146   151   152    
Lancaster, P.        159   173    
Latin rectangle        15   93    
Latin rectangle, first row        75   90   91    
Latin rectangle, second row        75   84   85    
Latin rectangle, third row        85—90    
Latin square(s) and geometry        13   14    
Latin square(s) and graphs        106—128    
Latin square(s) and groups        94—104    
Latin square(s) and linear algebra        14    
Latin square(s), and statistics        188—204    
Latin square(s), applications        255—265    
Latin square(s), applications, (r, s)-conflict free and parallel array access problem        258   259   264    
Latin square(s), applications, agricultural experiments        9—11    
Latin square(s), applications, authentication schemes        263   264    
Latin square(s), applications, check character systems        263   264    
Latin square(s), applications, classic squares and broadcast squares        259   260   264    
Latin square(s), applications, code design        11   12   101   102   228—239   263—265    
Latin square(s), applications, committee formation        8   9    
Latin square(s), applications, compiler testing        263   265    
Latin square(s), applications, cryptography        101   102   205—226   228—239   263—265    
Latin square(s), applications, drug test design        11    
Latin square(s), applications, experimental design        9—11   264    
Latin square(s), applications, golf design        13   262    
Latin square(s), applications, hash functions        263   264    
Latin square(s), applications, network testing systems        263—265    
Latin square(s), applications, tomography        263   265    
Latin square(s), applications, tournament design        12   13   260—262    
Latin square(s), column complete        115    
Latin square(s), complete        115    
Latin square(s), defined        3    
Latin square(s), diagonal        36    
Latin square(s), disjoint transversals        33   36    
Latin square(s), generalized        257   264    
Latin square(s), idempotent        33   34   36   123   124   282    
Latin square(s), introduction to        3—17    
Latin square(s), nearly consecutive symbols        263    
Latin square(s), order n        279    
Latin square(s), orthogonal        5—9     281    
Latin square(s), orthogonal mates        32   33   36    
Latin square(s), orthogonal sets        18   36   37    
Latin square(s), orthogonal, pair of        21    
                            
                     
                  
			 
		          
			Реклама