Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Gray J. — Mastering Mathematica
Gray J. — Mastering Mathematica



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Mastering Mathematica

Автор: Gray J.

Аннотация:

This book addresses the use of Mathematica as a symbolic manipulator, a programming language, and a general tool for knowledge representation. The purpose is to show the reader how to make Mathematica do the reader's kind of mathematics-whatever that may be.


Язык: en

Рубрика: Технология/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1994

Количество страниц: 663

Добавлена в каталог: 11.12.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
deleteZeros      366
Denominator      14
densityplot      130
DensityPlot, options of      130
Dependent variable      27
Depth      152
DERIVE      39
Dershowitz, N.      203
DET      32
Determinant      32
Diaconis, P      279
Diagonal      432
Differentiable mappings      469—484
Differentiable mappings, chain rule      476
Differentiable mappings, composition of      473
Differentiable mappings, curves      483—484
Differentiable mappings, damped harmonic motion      484
Differentiable mappings, domain, rules, and codomain      471
Differentiable mappings, examples      479—483
Differentiable mappings, generic maps      482
Differentiable mappings, identity maps      473
Differentiable mappings, intentional equality of      472
Differentiable mappings, minimal surfaces      496—508
Differentiable mappings, phase portrait      483
Differentiable mappings, plots of      477
Differentiable mappings, predicate for      472
Differentiable mappings, the tangent map      474—477
Differentiable mappings, theoremT      476
Differentiable mappings, type of      471
Differentiable surfaces      496—501
Differentiable surfaces examples      501—508
Differentiable surfaces examples, catenoid      503
Differentiable surfaces examples, helicoid      503
Differentiable surfaces examples, Monge      507
Differentiable surfaces examples, no name      506
Differentiable surfaces examples, plane      501
Differentiable surfaces examples, Sherk's first      504
Differentiable surfaces examples, Sherk's second      505
Differentiable surfaces examples, sphere      502
Differentiable surfaces examples, torus      501
Differentiable surfaces first fundamental form      498
Differentiable surfaces Gaussian curvature      496
Differentiable surfaces mean curvature      496
Differentiable surfaces mean curvature, other formula      507
Differentiable surfaces normal curvatures      496
Differentiable surfaces normal vector field      499
Differentiable surfaces principal curvatures      496
Differentiable surfaces secondFundamentalForm      499
Differential equations      26 87
Differential equations, Bernoulli      90 92
Differential equations, Bessel      95
Differential equations, constant coefficients      89
Differential equations, exact equations      91
Differential equations, gravitational attraction      99
Differential equations, homogeneous      92
Differential equations, Laplace transforms      103
Differential equations, Legendre      96
Differential equations, non-linear first order      89
Differential equations, numerical solutions      28 97—111
Differential equations, planetary orbit      99
Differential equations, Riccati      93
Differential equations, second order      94
Differential equations, series solutions      101
Differential equations, seven approaches      87
Differentiation      24 214 221 256
diffr      214 237
diffs      257
diffw      256
DigitBlock      66
Directedlnfinity      147
Directory      165 273
Disk      314
Disk, how to use with DOS      00
Disk, how to use with Mac      00
Disk, how to use with NeXT      000
Disk, how to use with Unix      000
displayDeal      601
DisplayFunction      123
distinctOrbits      409
Distribute      164 227
dodecahedron      344
DOM      471
Domain      471
Dot      147
Dot product      30
doubleEvenMagicSquare      622
Down values      199
DownValues      200 375
Drop      153
DSOLVE      27
DSolve.m      90
Dynamic programming      233
Dynamic scope      252
e      111
EdgeForm      337
edgeLists      465
edgeLists method      430 434
edgeListsFromAdjacencyMatrix      430
edgeListsFromOrderedPairs      434
Edges      429
Eigenvalues      32 33
ElectronConfigurationFormat      56
Eliminate      111
Empty      441
END      357
EndOfFile      269
EndPackage      358
Epilog      325
equal      147 217
Equations      15 17
Equations, algebraic      70—87
Equations, differential      87—111
Equations, impossible      18
Equations, logical combinations      84
Equations, matrix      81
Equations, simple examples of      19
Equations, simultaneous      79
Equations, transcendental      75
Euler angles      340
Euler angles, body coordinates versus space coordinates      340
Euler angles, effect on coordinate axes      340
EulerGamma      111
Evaluate      29 378
Evaluation      373—380
Evaluation as a function      373
Evaluation of conditions      379
Evaluation, depth first traversal      377
Evaluation, holding of      377
Evaluation, kinds of values      373
Evaluation, Literal versus RuleDelayed      379
Evaluation, normal order of      376—380
Evaluation, ReleaseHold versus Evaluate      378
EvenQ      218
Exercises, 3-dimensional points      307
Exercises, add methods to point      307
Exercises, algebraic equations      112 527—531
Exercises, algexpQ      236 277 604—607
Exercises, Broyden's method      394
Exercises, completeTheSquare      114 534
Exercises, continued fractions      192 560—562
Exercises, countTheCharacters      277 607
Exercises, deal      277 593—604
Exercises, differential equations      113 531
Exercises, differentiation      237
Exercises, digits in Pi      194 571
Exercises, directed points      307
Exercises, display of expressions      37 512
Exercises, eigenvalues and eigenvectors      38 519
Exercises, Exp[Pi Sqrt[163]]      115 540
Exercises, factor polynomials      36 511
Exercises, Fibonacci numbers      237 577—590
Exercises, fold      193 569
Exercises, Fourier Series approximations      349
Exercises, functional maxima      238 590
Exercises, gcd Pascal's triangle      168 547—549
Exercises, Gram — Schmidt      168 193 235 551—554 562—568 574—575
Exercises, incidence matrices of graphs      464
Exercises, infinite sums      278 610
Exercises, infinities      115 541
Exercises, integrals      37 235 511 513 573
Exercises, integration over singularities      115 542
Exercises, jacobians      114 167 191 535—540 545—547 555
Exercises, lambda calculus using With      394
Exercises, Laplace transforms      114
Exercises, limits      38
Exercises, local minima      394
Exercises, logarithms      59
Exercises, magic squares      279 621
Exercises, map and through      194 572
Exercises, mapVarsOnly      193 569
Exercises, Newton's method      191 393 556—559
Exercises, Pascal's triangle      114 533
Exercises, Pascal's triangle odd and even      168
Exercises, Pascal's triangle rotated      168 549
Exercises, perfect shuffles      278 612—616
Exercises, plot of a conic section      37 513
Exercises, power      192
Exercises, products of graphs      465
Exercises, reflexive graphs      465
Exercises, roots of complex numbers      38 518
Exercises, Simon questions      39 524
Exercises, Stolen Gold      278 608—610
Exercises, Stoutemyer experiments      39 115 523 540
Exercises, sums of squares      279 617—621
Exercises, tensor products of graphs      465
Exercises, the front end      60
Exercises, three dimensional plots      59
Exercises, transcendental equation      60
Exercises, trigonometric identities      36
Exercises, type      236 576
Exercises, VanDer Monde determinant      39 525
EXP      391
expand      11
ExpandAll      13
EXPONENT      15
Expression, recursive description of      144
Expressions      11 143—154
Expressions as functions      176
Expressions, applying functions to parts of      171
Expressions, arguments of      144
Expressions, atoms      143
Expressions, depth of      152
Expressions, display of large      150
Expressions, forms of      47 146
Expressions, heads of      144
Expressions, internal form      146
Expressions, levels of      152
Expressions, manipulating arguments of      153
Expressions, meaning of      145
Expressions, parts of      148
Expressions, paths of edges in      149
Expressions, rational      12
Expressions, replacing heads of      172
Expressions, structure of      144
Expressions, syntax of      144
Expressions, threading over      161
Expressions, tree structure of      149
f indlsomorphism      459 467
fac      45 206
FaceForm      337
FaceGrids      133 337
Factor      12 13
Factor modulo a prime number      85
Factor, Gaussian integers      68
Factorial      221 232
Factorial function      221 223
factorialDyn      233
factorialProc      254
Factoring      7
Factoring polynomials      12
Factorlnteger      7
FALSE      390
Fibonacci numbers, calculation of      237 577—590
Fibonacci numbers, comparison of methods      588
Fibonacci numbers, dynamic programming      237 579
Fibonacci numbers, dynamic versus recursive      581
Fibonacci numbers, iteration      237 582
Fibonacci numbers, matrix formula      238 587
Fibonacci numbers, numeric formula      238 584
Fibonacci numbers, recursive definition      237 577
Fibonacci numbers, symbolic formula      237 583
filenames      165
Files, construction of      270
files, reading from      272 332
Files, writing to      272
findHamiltonianCycle      464
findlso      459
findPair      383
FindRoot      76 81
first      153
firstFundamentalForm      498
fit      126
FixedPoint      179
FixedPointList      190
Flat      362
Flatten      30 159
FlattenAt      159
Floating point arithmetic      62
Floating point number      8
FLOOR      64
fold      180 192
foldleft      193 569
FoldList      180 193 571
FontForm      121 315
ForestGreen      311
FORMAT      158
Format as a function      374
FormatValues      376
FortranForm      48
four      391
Fourier sine series      328
foursquares      619
fractionalize      381
Frame      120
FreeQ      220
freeVars      389
frequencies      188
Front-end      41
FullForm      146
FullForm as a function      374
FullForm of complicated expressions      149
FullOptions      122
Function      148 174
Function Browser      53
function definitions      45
Functional programming      169—182
Functional programming, development of      186
Functional programming, evaluation history      170
Functional programming, higher order functions      169
Functional programming, lazy evaluation      170
Functional programming, polymorphism      282
Functional programming, referential transparency      170 242
Functional programming, simple examples of      183
Functional programming, the fundamental dictum of      182 276
Functional programming, versus Pascal or C      183
Functions      145
Functions applying to values      171—172
Functions definition using patterns      200
functions, anonymous      177
Functions, conversion between forms of      178
1 2 3 4 5 6
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте