Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Partee B.H., Meulen A.T., Wall R.E. — Mathematical Methods in Linguistics
Partee B.H., Meulen A.T., Wall R.E. — Mathematical Methods in Linguistics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Mathematical Methods in Linguistics

Авторы: Partee B.H., Meulen A.T., Wall R.E.

Аннотация:

Elementary set theory accustoms the students to mathematical abstraction, includes the standard constructions of relations, functions, and orderings, and leads to a discussion of the various orders of infinity. The material on logic covers not only the standard statement logic and first-order predicate logic but includes an introduction to formal systems, axiomatization, and model theory. The section on algebra is presented with an emphasis on lattices as well as Boolean and Heyting algebras. Background for recent research in natural language semantics includes sections on lambda-abstraction and generalized quantifiers. Chapters on automata theory and formal languages contain a discussion of languages between context-free and context-sensitive and form the background for much current work in syntactic theory and computational linguistics. The many exercises not only reinforce basic skills but offer an entry to linguistic applications of mathematical concepts. For upper-level undergraduate students and graduate students in theoretical linguistics, computer-science students with interests in computational linguistics, logic programming and artificial intelligence, mathematicians and logicians with interests in linguistics and the semantics of natural language.


Язык: en

Рубрика: Филология/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1990

Количество страниц: 663

Добавлена в каталог: 09.12.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Negative rational numbers      62 86
Negative, set of positive and      51
Negative, strong      387 388
New York Times      65
Newton, I.      89 91
Newtonian system      90 91
Node      440—447 544 545 547 567 568 581 619
Node admissibility condition      450
Non-Abelian group      612
Non-determinism      490—492 497 499 512 515 516 530—533
Non-deterministic automata      457 485 486
Non-deterministic finite automata      460 462 477 484
Non-deterministic finite language      562
Non-deterministic linear bounded automaton language      562
Non-deterministic pushdown automaton language      562
Non-distributivity      291—293
Non-empty set      46 206 219 232 281 288
Non-empty subset      283 287
Non-finite automaton      462 463
Non-finite of primitives      92
Non-modularity      291 292
Non-monotone      382
Non-reflexive relation      39 40
Non-terminal alphabet      437
Non-terminal symbol      439 446 451
Non-triviality      379
Non-Turing acceptable language      562
Nonconnected relation      42 43
Nonconnectedness      578 579
Nondenumerable set      62 64 69
Nondenumerable set, infinite      69 86
Nonidentical first and second members      42
Nonnegative integers      80
Nonreflexive relation      51
Nonsymmetric      45
Nonsymmetric relation      40 43 44
Nonsymmetry      578 579
Nontangling condition      442—444
Nontransitive relation      41—44
Nontransitivity      578 579
Normal form, prenex      151
Normal form, quantifier laws and      148
Not every automaton      566
Notation      34 135 136 234 236 239
Notation, binary      66 69
Notation, empty list      9
Notation, list      4—6
Notation, predicate      6 11 12 14 16 28 31 33
Notation, set-theoretic      4
Notion, primitive      27
Noun      231 439 440
Noun phrase      102 395 399 404—408 410 411 418 419 426 439 440—443 480 504
Null set      4 10 19 21 123 189
Null string      192
NUMBER      230 263 267 274 340 395
Number theory      16 400
Number, cardinal      56 59 62 63 73
Number, extension to the set of all rational      80
Number, extension to the set of all real      82
Number, finite      72
Number, infinite      72
Number, infinite, infinite cardinal      65 73
Number, irrational      64
Number, natural      3 9 11 36 51 56—60 62 66 75 76 78—80 85 86 194—196 200
Number, negative rational      86
Number, positive rational      86
Number, rational      60 64 81—83
Number, real      51 64 65 69 70
Number, set of real      66
Number, systems, set-theoretic reconstruction      75
Number, theoretic tree      379 380
Number, unique real      69
Object      3 4 11 16 28 29 31
Object, language      92 319
Object, linguistic      5
Object, named      5
Odd integers      60
Oehrle, R.      553
Omniscience      422
One to one correspondence      32—36 55—63 67 69 76 78 86 198 200 204 205 253 271 311 579 580 612
One to one function      32 34 37 56 62
One to one mapping      56
Onto function      32 34 37
Opacity      405 406 408—415 418—421 423 425 426
Open formula      142 208
Open statement      138 139 144
Operation      250 252 253 257—261 263 264 266 267 271 273—275 281—284 297 311 312 314 318—321 324 325 334 335 348 350 362—364 420 612
Operation, complementation      477
Operation, intersection      255 477
Operation, order and      v
Operation, set-theoretic      12
Operator, unary      100
Order      50 208—213 232 264 267 278 280—283 306 363 391 393 434 435 442—444 580 588 607
Order and operation      v
Order, chronological      86
Order, linear      51 66 69 76
Order, partial      51
Order, strict      47—49 51
Order, strong      47
Order, theory      277 285
Order, total      51 53
Order, weak      47—51
Order, weak, partial      53
Ordered n-tuple      27
Ordered n-tuple, set of      36f
Ordered pair      28 29 34 39 40 41 44 47 48 60 62 79 81 143 145 146 174 186 313 438 444
Ordered pair and Cartesian products      27
Ordered pair, set of      30 31
Ordered quadruples      30 62
Ordered set, finite linearly      51
Ordered set, finite partially      51
Ordered system, linearly      86
Ordered system, partially      86
Ordered triple      27 30 62
Ordering      47 79 81
Ordinary arithmetic, language of      93
Ordinary set      27
Output      453 454 565
pair      313
Pair, ordered      28 29 34 39 40 41 44 47 48 60 62 79 81 143 145 146 174 186
Pair, reversed members of      40
Pairing      218
Papadimitriou, Ch.      463 466 492
Paradox      427
Paradox, Grelling's      26
Paradox, logical      7
Paradox, Russell's      7 10 26 63
Paradox, set-theoretic      8
Parallel postulate      89 90
PARAMETER      395—397 422 425 427—429
Parse tree      494 495 501 502
Parsing      vi
Parsons      334
Partee, B.H.      v vii 334 352 254 257 358 366 379 427 555
Partial function      31 32
Partial order      51 277 278 280 282 306 393
Partial order, weak      53
Partial recursive function      520
Partially ordered set      51
Partially ordered system      86
Partition      135
Partition, equivalence relation and      45
Partition, induced      47 52
Partition, trivial      46
Partitioning      46
Pascal, B.      93
passive      363 367
Peano, axiom      194 197 200 212 215—217 230 234 237
Peano, axiomatization      232
Peano, fifth postulate      269
Peano, G.      194 195 197 200 212 215—217 230 232 234 237 269
Performative      95
Permutation invariance      572
persistent      381
Peters, S.      320 334 352 415 555—558
Phoneme      3 52 433 578
Phonemic overlap      578
Phones      52
Phonetics, acoustic      vi
Phrasal conjunction      103 352 354
Phrasal passive rule      363
Phrasal rule      364
phrase      102 480
Phrase, structure      322
Phrase, structure tree      474 515
PNF      152 153 159 178 229
Polarity      386
Polarity, reversal      385
Polish notation      135 136 234 236
Pollard, C.      548
Polygons, regular      70
POSET      277—285 288 295 306 308 609
Positive and negative integers, set of      51
Positive closure      533
Positive element      268 269
Positive even integers      56
Positive function      59
Positive integer      6 9 49 59 60 61 79 80 235 265 434
Positive integer, relation of      43
Positive integer, set of      55 56
Positive rational numbers      86 257
Positive, strong      387 388 394
Possessive      390
Post Correspondence Problem      525
Post, E.      518
Postulate      364—366
Postulate, parallel      89 90
Power, finite      73
Power, integral      71
Power, set      11 62 63—65 185 218 219 232 235 275 280 295 300—302 376 435 596
Power, set, lattice      304
Precedence      441 442
Precedence relation      444 446
Predecessor      49—53 76 217 442
Predicate      8 23 42 138 139 140 143 144 166 170 171 173 176 178 182 183 185 195 196 199 205 216 242
Predicate calculus      95 142 144 147 160 341 343
Predicate logic      vi 96 97 137 140 142 143 147 148 153 169 175 177 212 214 225—231 234 236 241 246 307 308 318 323 324—328 330 333 350 359 360 362 363 368 369 373 382 385 405 408 409 413—415 419—421
Predicate logic, statement logic and      95
Predicate notation      6 11 12 14 16 28 31 33
Prefix      435
Premise      115 117 119 120 122—126 129 155 156 160—168 171 173 174 197 221 236 270 412 418—421
Prenex normal form, quantifier laws and      148 151
Preorder      209
Presupposition      242 243 398
Prime      99 128 188
primitive      94 217 220 237 319 414 415 434
Primitive non-empty set of      92
Primitive notion      27
Primitive predicate      216
Principal filter      620
Principal ideal      288
Principle of compositionaiity      254 317 318
Principle of Finite Induction      269 270
Principle of Mathematical Induction      195—199 235 596 608 609
Principle, consistency      18 20 22
Probability and statistics      vi
Problem      512 513 523 524
Produces in one move      459 460 462 491 492 510 511
PRODUCT      498
Product, cartesian      28 29 30 60 62
Production      187 191 192 536 537 549 596
Production, schemata      187 189—191 193 197
Productions of inference      186 189
PROGRAM      455
Program, Chomsky's      94
Program, Hilbert's      94
Programming language      7 8 93 348 351 491
Programming semantics      8
Projection onto first and second coordinates      28
Projection onto first coordinate      29
Projection onto second coordinate      29
Projection, problem      243
PROLOG      93 214
Proof, conditional      120—122
Proof, formal and informal      170
Proper ideal      289
Proper subset      10
Properties      251
Properties of complements      45
Properties of connectedness      44
Properties of inverses      45
Properties of operation      250
Properties of reflexivity      44
Properties of relations      39 45 51 52
Properties of set      7
Properties of symmetries      44
Properties of transitivity      44
Properties truth-functional      101
Properties, inverses and complements      44
Proposition      100 162
Propositional calculus      95 135 138 142 144 145 163
Propositional logic      142
Pseudo-complement      304 611
Pseudo-complementation      305—309 314
Pseudocleft      358
Pullum, G.      503 542
Pumping lemma      571
Pumping theorem      471—473 480 481 494 496 497 499 502 505 506 545
Push and copy rule      536
Pushdown automata      487—493 497 499 506 508 512 529 530 541 571—573
Quadruple      438 491 508 510 520 526 548 551
Quadruple, ordered      30 62
Quantification      395 418 424
Quantification, vacuous      140 141
Quantified variable      140
Quantifier      138—156 159—161 163 164 167 169 170 177 208 225 229 231—233 308 318 323 324 358—360 373 374 375—380 383—385 387 388 390—393 395 397—400 409 416 424 426 565 567 571 572 591
Quantifier, automata      565
Quantifier, dependence, law of      150
Quantifier, distribution      172
Quantifier, distribution, laws of      149 161 171
Quantifier, generalized      vi
Quantifier, independence, law of      150
Quantifier, law, first      148
Quantifier, laws and prenex normal form      148
Quantifier, movement, laws of      151 154
Quantifier, negation      159 164 595
Quantifier, negation, laws      154 173
Quantifier, word      97
quantity      378—380 383 392 394—397 618 621
Quasi-model      223
Quasi-order      209
Quasi-reflexivity      620
Quaternary function      36
Quaternary relation      30 36
Question      479
Quine's dagger      239
Quine, W.V.O.      239 406
Quintuple      458 462
Rabin, M.      463
RANGE      29 30 36 56
Range of function      32 34
Rasiowa, H.      306
Rational numbers      60 64 75 81—83 257 267 274
Rational numbers, extension to the set of all      80
Rational numbers, negative      62 86
Rational numbers, positive      86
Rational numbers, subsystem of      80
Real numbers      51 64 65 69 70 267 340
Real numbers, extension to the set of all      82
Real numbers, set of      66
1 2 3 4 5 6
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте