Авторизация
Поиск по указателям
Partee B.H., Meulen A.T., Wall R.E. — Mathematical Methods in Linguistics
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Mathematical Methods in Linguistics
Авторы: Partee B.H., Meulen A.T., Wall R.E.
Аннотация: Elementary set theory accustoms the students to mathematical abstraction, includes the standard constructions of relations, functions, and orderings, and leads to a discussion of the various orders of infinity. The material on logic covers not only the standard statement logic and first-order predicate logic but includes an introduction to formal systems, axiomatization, and model theory. The section on algebra is presented with an emphasis on lattices as well as Boolean and Heyting algebras. Background for recent research in natural language semantics includes sections on lambda-abstraction and generalized quantifiers. Chapters on automata theory and formal languages contain a discussion of languages between context-free and context-sensitive and form the background for much current work in syntactic theory and computational linguistics. The many exercises not only reinforce basic skills but offer an entry to linguistic applications of mathematical concepts. For upper-level undergraduate students and graduate students in theoretical linguistics, computer-science students with interests in computational linguistics, logic programming and artificial intelligence, mathematicians and logicians with interests in linguistics and the semantics of natural language.
Язык:
Рубрика: Филология /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1990
Количество страниц: 663
Добавлена в каталог: 09.12.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Negative rational numbers 62 86
Negative, set of positive and 51
Negative, strong 387 388
New York Times 65
Newton, I. 89 91
Newtonian system 90 91
Node 440—447 544 545 547 567 568 581 619
Node admissibility condition 450
Non-Abelian group 612
Non-determinism 490—492 497 499 512 515 516 530—533
Non-deterministic automata 457 485 486
Non-deterministic finite automata 460 462 477 484
Non-deterministic finite language 562
Non-deterministic linear bounded automaton language 562
Non-deterministic pushdown automaton language 562
Non-distributivity 291—293
Non-empty set 46 206 219 232 281 288
Non-empty subset 283 287
Non-finite automaton 462 463
Non-finite of primitives 92
Non-modularity 291 292
Non-monotone 382
Non-reflexive relation 39 40
Non-terminal alphabet 437
Non-terminal symbol 439 446 451
Non-triviality 379
Non-Turing acceptable language 562
Nonconnected relation 42 43
Nonconnectedness 578 579
Nondenumerable set 62 64 69
Nondenumerable set, infinite 69 86
Nonidentical first and second members 42
Nonnegative integers 80
Nonreflexive relation 51
Nonsymmetric 45
Nonsymmetric relation 40 43 44
Nonsymmetry 578 579
Nontangling condition 442—444
Nontransitive relation 41—44
Nontransitivity 578 579
Normal form, prenex 151
Normal form, quantifier laws and 148
Not every automaton 566
Notation 34 135 136 234 236 239
Notation, binary 66 69
Notation, empty list 9
Notation, list 4—6
Notation, predicate 6 11 12 14 16 28 31 33
Notation, set-theoretic 4
Notion, primitive 27
Noun 231 439 440
Noun phrase 102 395 399 404—408 410 411 418 419 426 439 440—443 480 504
Null set 4 10 19 21 123 189
Null string 192
NUMBER 230 263 267 274 340 395
Number theory 16 400
Number, cardinal 56 59 62 63 73
Number, extension to the set of all rational 80
Number, extension to the set of all real 82
Number, finite 72
Number, infinite 72
Number, infinite, infinite cardinal 65 73
Number, irrational 64
Number, natural 3 9 11 36 51 56—60 62 66 75 76 78—80 85 86 194—196 200
Number, negative rational 86
Number, positive rational 86
Number, rational 60 64 81—83
Number, real 51 64 65 69 70
Number, set of real 66
Number, systems, set-theoretic reconstruction 75
Number, theoretic tree 379 380
Number, unique real 69
Object 3 4 11 16 28 29 31
Object, language 92 319
Object, linguistic 5
Object, named 5
Odd integers 60
Oehrle, R. 553
Omniscience 422
One to one correspondence 32—36 55—63 67 69 76 78 86 198 200 204 205 253 271 311 579 580 612
One to one function 32 34 37 56 62
One to one mapping 56
Onto function 32 34 37
Opacity 405 406 408—415 418—421 423 425 426
Open formula 142 208
Open statement 138 139 144
Operation 250 252 253 257—261 263 264 266 267 271 273—275 281—284 297 311 312 314 318—321 324 325 334 335 348 350 362—364 420 612
Operation, complementation 477
Operation, intersection 255 477
Operation, order and v
Operation, set-theoretic 12
Operator, unary 100
Order 50 208—213 232 264 267 278 280—283 306 363 391 393 434 435 442—444 580 588 607
Order and operation v
Order, chronological 86
Order, linear 51 66 69 76
Order, partial 51
Order, strict 47—49 51
Order, strong 47
Order, theory 277 285
Order, total 51 53
Order, weak 47—51
Order, weak, partial 53
Ordered n-tuple 27
Ordered n-tuple, set of 36f
Ordered pair 28 29 34 39 40 41 44 47 48 60 62 79 81 143 145 146 174 186 313 438 444
Ordered pair and Cartesian products 27
Ordered pair, set of 30 31
Ordered quadruples 30 62
Ordered set, finite linearly 51
Ordered set, finite partially 51
Ordered system, linearly 86
Ordered system, partially 86
Ordered triple 27 30 62
Ordering 47 79 81
Ordinary arithmetic, language of 93
Ordinary set 27
Output 453 454 565
pair 313
Pair, ordered 28 29 34 39 40 41 44 47 48 60 62 79 81 143 145 146 174 186
Pair, reversed members of 40
Pairing 218
Papadimitriou, Ch. 463 466 492
Paradox 427
Paradox, Grelling's 26
Paradox, logical 7
Paradox, Russell's 7 10 26 63
Paradox, set-theoretic 8
Parallel postulate 89 90
PARAMETER 395—397 422 425 427—429
Parse tree 494 495 501 502
Parsing vi
Parsons 334
Partee, B.H. v vii 334 352 254 257 358 366 379 427 555
Partial function 31 32
Partial order 51 277 278 280 282 306 393
Partial order, weak 53
Partial recursive function 520
Partially ordered set 51
Partially ordered system 86
Partition 135
Partition, equivalence relation and 45
Partition, induced 47 52
Partition, trivial 46
Partitioning 46
Pascal, B. 93
passive 363 367
Peano, axiom 194 197 200 212 215—217 230 234 237
Peano, axiomatization 232
Peano, fifth postulate 269
Peano, G. 194 195 197 200 212 215—217 230 232 234 237 269
Performative 95
Permutation invariance 572
persistent 381
Peters, S. 320 334 352 415 555—558
Phoneme 3 52 433 578
Phonemic overlap 578
Phones 52
Phonetics, acoustic vi
Phrasal conjunction 103 352 354
Phrasal passive rule 363
Phrasal rule 364
phrase 102 480
Phrase, structure 322
Phrase, structure tree 474 515
PNF 152 153 159 178 229
Polarity 386
Polarity, reversal 385
Polish notation 135 136 234 236
Pollard, C. 548
Polygons, regular 70
POSET 277—285 288 295 306 308 609
Positive and negative integers, set of 51
Positive closure 533
Positive element 268 269
Positive even integers 56
Positive function 59
Positive integer 6 9 49 59 60 61 79 80 235 265 434
Positive integer, relation of 43
Positive integer, set of 55 56
Positive rational numbers 86 257
Positive, strong 387 388 394
Possessive 390
Post Correspondence Problem 525
Post, E. 518
Postulate 364—366
Postulate, parallel 89 90
Power, finite 73
Power, integral 71
Power, set 11 62 63—65 185 218 219 232 235 275 280 295 300—302 376 435 596
Power, set, lattice 304
Precedence 441 442
Precedence relation 444 446
Predecessor 49—53 76 217 442
Predicate 8 23 42 138 139 140 143 144 166 170 171 173 176 178 182 183 185 195 196 199 205 216 242
Predicate calculus 95 142 144 147 160 341 343
Predicate logic vi 96 97 137 140 142 143 147 148 153 169 175 177 212 214 225—231 234 236 241 246 307 308 318 323 324—328 330 333 350 359 360 362 363 368 369 373 382 385 405 408 409 413—415 419—421
Predicate logic, statement logic and 95
Predicate notation 6 11 12 14 16 28 31 33
Prefix 435
Premise 115 117 119 120 122—126 129 155 156 160—168 171 173 174 197 221 236 270 412 418—421
Prenex normal form, quantifier laws and 148 151
Preorder 209
Presupposition 242 243 398
Prime 99 128 188
primitive 94 217 220 237 319 414 415 434
Primitive non-empty set of 92
Primitive notion 27
Primitive predicate 216
Principal filter 620
Principal ideal 288
Principle of compositionaiity 254 317 318
Principle of Finite Induction 269 270
Principle of Mathematical Induction 195—199 235 596 608 609
Principle, consistency 18 20 22
Probability and statistics vi
Problem 512 513 523 524
Produces in one move 459 460 462 491 492 510 511
PRODUCT 498
Product, cartesian 28 29 30 60 62
Production 187 191 192 536 537 549 596
Production, schemata 187 189—191 193 197
Productions of inference 186 189
PROGRAM 455
Program, Chomsky's 94
Program, Hilbert's 94
Programming language 7 8 93 348 351 491
Programming semantics 8
Projection onto first and second coordinates 28
Projection onto first coordinate 29
Projection onto second coordinate 29
Projection, problem 243
PROLOG 93 214
Proof, conditional 120—122
Proof, formal and informal 170
Proper ideal 289
Proper subset 10
Properties 251
Properties of complements 45
Properties of connectedness 44
Properties of inverses 45
Properties of operation 250
Properties of reflexivity 44
Properties of relations 39 45 51 52
Properties of set 7
Properties of symmetries 44
Properties of transitivity 44
Properties truth-functional 101
Properties, inverses and complements 44
Proposition 100 162
Propositional calculus 95 135 138 142 144 145 163
Propositional logic 142
Pseudo-complement 304 611
Pseudo-complementation 305—309 314
Pseudocleft 358
Pullum, G. 503 542
Pumping lemma 571
Pumping theorem 471—473 480 481 494 496 497 499 502 505 506 545
Push and copy rule 536
Pushdown automata 487—493 497 499 506 508 512 529 530 541 571—573
Quadruple 438 491 508 510 520 526 548 551
Quadruple, ordered 30 62
Quantification 395 418 424
Quantification, vacuous 140 141
Quantified variable 140
Quantifier 138—156 159—161 163 164 167 169 170 177 208 225 229 231—233 308 318 323 324 358—360 373 374 375—380 383—385 387 388 390—393 395 397—400 409 416 424 426 565 567 571 572 591
Quantifier, automata 565
Quantifier, dependence, law of 150
Quantifier, distribution 172
Quantifier, distribution, laws of 149 161 171
Quantifier, generalized vi
Quantifier, independence, law of 150
Quantifier, law, first 148
Quantifier, laws and prenex normal form 148
Quantifier, movement, laws of 151 154
Quantifier, negation 159 164 595
Quantifier, negation, laws 154 173
Quantifier, word 97
quantity 378—380 383 392 394—397 618 621
Quasi-model 223
Quasi-order 209
Quasi-reflexivity 620
Quaternary function 36
Quaternary relation 30 36
Question 479
Quine's dagger 239
Quine, W.V.O. 239 406
Quintuple 458 462
Rabin, M. 463
RANGE 29 30 36 56
Range of function 32 34
Rasiowa, H. 306
Rational numbers 60 64 75 81—83 257 267 274
Rational numbers, extension to the set of all 80
Rational numbers, negative 62 86
Rational numbers, positive 86
Rational numbers, subsystem of 80
Real numbers 51 64 65 69 70 267 340
Real numbers, extension to the set of all 82
Real numbers, set of 66
Реклама