| 
		        
			        |  |  
			        |  |  
					| Авторизация |  
					|  |  
			        |  |  
			        | Поиск по указателям |  
			        | 
 |  
			        |  |  
			        |  |  
			        |  |  
                    |  |  
			        |  |  
			        |  |  |  | 
		|  |  
                    | Little R.J.A., Rubin D.B. — Statistical analysis with missing data |  
                    |  |  
			        |  |  
                    | Предметный указатель |  
                    | | Ignorable sampling mechanisms      245 Implicit model      256
 Imputation      (see Filling in for missing values)
 Income nonresponse      65 227—230
 Incomplete-data likelihood      134
 Incompletely-classified data      (see Partially classified contingency tables)
 Independent variables, missing values in      153—157 196 203
 Inestimable parameters      119—124 239
 Inference based on maximum likelihood, theory      84—88
 Information/information matrix      85 98
 Information/information matrix, complete      137—138
 Information/information matrix, expected      85 96 128 137 138 145
 Information/information matrix, fraction missing      137—138
 Information/information matrix, missing      137—138 139 194 257
 Information/information matrix, observed      85 96 128
 Instrumental variables      (see Heckman’s two-step method Restrictions
 Interactions in contingency tables      (see Association in
 Interactions in regression      154
 Interval estimation      84 105—107
 Interval estimation, RLS      209—216
 Ireland, C. T.      59 72
 Irregularly-spaced time series      (see Time series models)
 Item nonresponse      13 15 16 60 66—67 247—248
 Iterative methods      26 127—141 185
 Iterative proportional fitting algorithm      204
 Iterative proportional fitting algorithm to known margins      (see Raking)
 Iteratively reweighted least squares      (see IRLS)
 Jackknife      71
 Jarrett, R. G.      22 27 34 36 37
 Jeffreys’ prior for normal sample      104
 Jenkins, G. M.      162 168
 Jenkins, J. G.      19
 Jennrich, R.      1 157 158 159 160 168 169
 Jensen’s Inequality      135
 Johnson, J. H.      71
 Jones, R. H.      162 168
 Kalfon, G.      60 65 72
 Kalman filter models      162 166—168
 Kalman, R. E.      162 165 168
 Kaufman, L.      183 193
 Kempthorne, O.      21 36
 Kim, J. O.      43 48 49
 Kish, L.      60 65 72
 Kleinbaum, D. G.      41 48
 Krzanowski, W. J.      203 216
 Kullback, S.      59 72
 Kulldorff, G.      22 241
 Kupper, L. L.      41 48
 Lack of fit      239 (see also Goodness-of-fit statistics)
 Laird, N. M.      6 18 129 130 131 135 136 137 139 145 150 152 168 209 210 216 237 240 241 262 264
 Langwell, K.      169
 Laplace (double exponential) distribution      96
 Large sample likelihood theory      84—86
 Latent variable model      148—149
 Latin square      26 37—38
 Least squares analysis      21 38
 Least squares analysis via EM      152—153
 Least squares analysis, estimation      22—23 25—32
 Ledolter, J.      165 168
 Leprosy      177
 Li, K. H.      255 264
 Likelihood ratio statistic      87—88 158 161 186 192 205 217 239
 Likelihood with missing data      89—90 218—220
 Likelihood with monotone missing data      (see Factored)
 Likelihood, equation      81 128
 Likelihood, function      79—81
 Likelihood, ignoring the missing-data mechanism      89
 Likelihood, test for MCAR      193
 Lillard, L.      227 228 229 230 241
 Lindley, D. V.      85 95 105 124
 Linear estimators      70
 Linear model      21—24 113
 Linear model with missing outcomes      21—38 152—153 222—230 232—235
 Linear model with missing predictors and outcomes      153—157 196 203
 Linear regression      (see Linear model)
 Listwise deletion      (see Complete-case methods)
 Little, R. J. A.      6 19 57 58 62 71 72 92 95 104 107 124 129 139 144 145 154 155 168 169 170 193 195 198 200 205 207 209 212 215 216 217 230 235 237 241 242 245 248 250 254 261 264
 Local maxima of the likelihood      200 206 208
 Logistic regression model      57 196—206 230 254 262
 Loglikelihood function      80—81
 Loglinear models      172 185—193 203—206 235 241
 Longitudinal study      4 157
 Lord, F. M.      120 124
 Lost information      (see Information/information matrix missing)
 Louis, T. A.      137 139
 M step (maximization step)      130 (see also EM algorithm)
 Madow, W. G.      50 51 71 72 254 262 264
 Main effects in contingency tables      185
 MAR      (see Missing at random (MAR))
 Marini, M. M.      7 8 19 109 125
 Markov model      129
 Matching of files      121
 Matching to fill in respondent values      (see Hot deck imputation)
 Matthai, A.      42 48
 Maximizing over the missing data      92—95
 Maximum likelihood (ML)      12 37 81—84 98 Factored Likelihood)
 MCAR      (see Missing completely at random (MCAR))
 McCullagh, P.      171 193
 McKendrick, A. G.      129 139
 Mean imputation      6 44—47 60 61—62 74
 Mechanisms leading to missing data      (see Ignorable missing-data mechanism Nonignorable
 Mehra, R. K.      165 168
 Meltzer, A.      166 167 169
 Missing at random (MAR)      10 14—17 90
 Missing completely at random (MCAR)      14—17 39
 Missing information      (see Information matrix missing)
 Missing information principle      129 (see also EM algorithm)
 Missing values as parameters      92—95 126
 Missing-data indicator      89
 Missing-plot techniques      (see Analysis of variance (ANOVA))
 Missing-value covariates      27—36
 Misspecification of model      (see Sensitivity of inference)
 Mixed normal and nonnormal data      195—217
 Mixed-effects analysis of variance      149 157—161
 Mixed-up bivariate normal sample      93
 Mixture models      207—216
 Mixture models for respondent and nonrespondent strata      230—235 262—264
 ML      (see Maximum likelihood (ML))
 Model-based methods      7
 Model-based methods for surveys      52—53 244—265
 Monotone pattern of missing data      4 7 8 14 17 19 98—119 172—181 188 215 244 248
 Monotone pattern of missing data for bivariate counted data      174—181
 Monotone pattern of missing data for multivariate normal data      109—112
 More observed variables      7 14 119 207
 Morgensfem, H.      41 48
 Morrison, D. F.      125
 Multinomial data      4—5 131—132 138 171—194 196
 Multinomial data, distribution      95 265
 Multiple correlations      124
 Multiple imputation      61 255—259 264 265
 Multiple linear regression      84 142 152—157 Normal
 Multiple maxima      200 207 208
 Multivariate analysis of variance      203—206
 Multivariate analysis of variance, data      16—18 39—49
 Multivariate analysis of variance, normal      81 82 140 142—170
 Multivariate analysis of variance, normal mixtures      207
 Multivariate analysis of variance, normal monotone data      109—112 116—119
 Multivariate analysis of variance, regression      155—157 215—216
 Multivariate analysis of variance, t samples      211—216
 Multiway tables      (see Categorical data)
 Muscative Coronary Risk Factor Study      4
 Nearest-neighbor hot deck      65—66
 Nested missing-data pattern      (see Monotone pattern of missing data)
 Nested models      87
 Never jointly observed      120
 Newton — Raphson algorithm      128 130 140 146 158 165
 Nie, N. H.      6 19
 Nisseison, H.      72 262 264
 Noncontact      (see Unit nonresponse)
 Nonignorable adjustment cell model      260—261
 
 | Nonignorable missing-data mechanism      8—13 19 89 90 218—241 248 259—264 Nonignorable missing-data mechanism with follow-ups      243 262—264
 Nonignorable missing-data mechanism, sampling mechanism      246
 Noninterview adjustments      (see Unit nonresponse)
 Nonlinear estimators      71
 Nonlinear regression      93
 Nonrandomly missing data      (see Nonignorable missing-data mechanism)
 Nonrandomly missing data as random subsampling      54
 Nonrandomly missing data, mechanism      (see Ignorable missing-data)
 Nonrandomly missing data, strata      3 53 219—220
 Nonrandomly missing data, weights      58
 Nordheim, E. V.      235 241
 Normal data      196—217 222—235
 Normal data, censored      223 224—225
 Normal data, grouped with covariates      222—223
 Normal data, linear regression model      83 99—101 196—217
 Normal data, nonignorable models      223—230
 Normal data, sample      82—83 93—94
 Observed at random (OAR)      14—17
 Observed likelihood      134
 Odds ratio      41 48 194
 Odds ratio of response rates      75
 Oh, H. L.      53 56 62 72 74
 Olkin, I.      72 196 216 262 264
 Olsen, A. R.      7 8 19 109 125
 Olsen, R. J.      230 242
 Optimal, asymptotic properties      86
 Orchard, T.      6 19 129 138 139 144 169
 Orthonormal linear combinations      34—36
 Outliers      210 215
 Oxspring, H. H.      177 179 193
 p-value      87 192
 Pairwise available-case methods      42
 Panel study      7 40 109—112
 Parameters of conditional association      120
 PariS, R.      71
 Partial correlation      120—124
 Partial information      (see Information matrix observed)
 Partially classified contingency tables      14 171—194 235—241
 Pattern of missing data      4 248
 Patterned covariance matrices      146—148
 Pearce, S. C.      27 36
 Pearson chi-squared statistic      186 192
 Petrie, T.      139
 Pettitt, A. N.      211 216
 Phillips, G. D. A.      162 168
 Pivoting      (see Sweep operator (SWP))
 pixels      183
 Poisson data      80 82 173
 Polynomials of regressors      154
 Positron emission tomography (PET)      183—185
 Posterior distribution      (see Bayesian inference)
 Poststratification      58 66 251 253 258 259 265
 Poststratified estimator of the mean      (see Poststratification)
 Potthoff, R. F.      158 159 169
 Power transformation      227
 PRECISION      180—181
 Precision of estimation from filled-in data      255—259 (see also Asymptotic covariance matrix of parameters or estimates)
 Predicting missing values      (see Filling in for missing values)
 Predictive Bayesian approach      230—235 (see also Multiple imputation)
 Predictive distribution      231 256
 Preece, D. A.      27 36
 Pregibon, D.      235 242 261 264
 Press, S. J.      93 95
 Principal component analysis      142
 Prior distribution      (see Bayesian inference)
 Probability of response      (see Response propensity)
 Probability sampling      9 51 245
 Probit regression of response      57 229—230 with
 Propensity scores      57
 Propensity scores, stratification on      74
 Proper imputation      259
 Q-function      134 (see also EM algorithm)
 Quasi-randomization inference      53—75
 Quick missing-data adjustments      39 49
 Raked estimate      59 74
 Raking      59 74—75
 Random effects model      149 158 161
 Random effects model for time series      165
 Random sampling with replacement      69
 Randomization inference for surveys      6 50—75
 Randomized block      26 31 35—36
 Randomly missing data      (see Missing completely at random (MCAR) Missing
 Rao, C. R.      35 36 82 84 95 135 139
 Ratio estimator      254
 Ratios, imputation of      67
 Reece, J. S.      230 241
 Refined and coarse classifications      177—179
 Refusal to answer      1 (see also Income nonresponse)
 Regression      9 41 43 48 49 83 84 108 116 152—157 170
 Regression, estimator      102 254
 Regression, imputation      6 45—47 61 253—255 Filling
 Regression, interactions in      154 (see also Linear model)
 Regular exponential family      96 138—139 143
 Reinisch, J. M.      155 169
 Repeated imputations      (see Multiple imputation)
 Repeated measured model      157—161
 Replacement units      60
 Residuals, added to imputations      61 (see also Filling in for missing values stochastically to
 Response indicator matrix      19 89
 Response propensity      57
 Response rates      56 (see also Pattern of missing data)
 Restricted covariance matrix      146—152 157—161
 Restrictions on regression coefficients      224 226
 Reverse sweep (RSW)      115 126
 Reviews of missing-data literature      6 39 262
 Robust estimation      209—216
 Robust estimation, inference      263 (see also Sensitivity of inference)
 Robust estimation, regression      211—216
 Robust estimation, variances, correlations      209—216
 Rosenbaum, P. R.      57 72
 Rosenblum, L. A.      169
 Rounded data      (see Grouped and rounded data)
 Roy, S. N.      158 159 169
 Royall, R. M.      254 264
 Rubin, D. B.      6 7 8 14 18 19 30 31 33 34 37 43 48 57 61 66 71 72 89 90 93 95 109 117 119 120 121 122 124 125 126 129 130 131 135 136 137 139 145 147 148 149 150 152 168 169 170 183 193 208 209 210 211 212 216 229 230 231 232 234 242 244 245 246 249 250 254 255 256 257 258 259 262 264
 Samdal, C. E.      58 71 73
 Sample mean vector and covariance matrix      17
 Sample surveys      16 50—75
 Sampling frame      9
 Sampling mechanism      245
 Sampling variance      67—71
 Sampling weight      55
 Samuhel, M. E.      71 241
 Sande, I. G.      66 71 72
 Satterthwaite, F. E.      257
 Saturated model      188
 Schenker, N.      255 257 258 259 265
 Scheuren, F. S.      53 56 61 62 72 74
 Schieber, S. J.      61 72
 Schluchter, M. D.      157 158 159 160 168 195 198 200 205 207 216 217
 Schulzinger, M. F.      169
 Score function      81 128
 Scoring algorithm      128 130 145
 Scott, A. J.      93 95 246 265
 selection model      223—230 242 262—264
 Sensitivity of inference      225 231—235 259 261
 Sensitivity of inference with followups      262—264
 Sex differences      155—157
 Shepp, L. A.      183 193
 Shumway, R. H.      162 165 166 167 169
 Significance levels      (see P-value)
 Simple random sampling      51 53
 Simulation of posterior distributions      105—107
 Simulation studies of missing-data methods      43 215 262—264
 Small-sample inference      104—107 125
 Smith, H.      23 36 117 124
 Smith, J. P.      227 228 229 230 241
 Smoothing      165 253
 Snedecor, G. W.      23 37 101 125 150 169
 
 | 
 |  |  |  | Реклама |  |  |  |  |  |