Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Little R.J.A., Rubin D.B. — Statistical analysis with missing data
Little R.J.A., Rubin D.B. — Statistical analysis with missing data



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Statistical analysis with missing data

Авторы: Little R.J.A., Rubin D.B.

Аннотация:

Statistical analysis of data sets with missing values is a pervasive problem for which standard methods are of limited value. "Statistical Analysis with Missing Data" is a standard reference on missing-data methods.
Blending theory and application, authors Roderick Little and Donald Rubin review historical approaches to the subject and describe rigorous yet simple methods for multivariate analysis with missing values. They then provide a coherent theory for analysis of problems based on likelihoods derived from statistical models for the data and the missing-data mechanism and apply the theory to a wide range of important missing-data problems.


Язык: en

Рубрика: Computer science/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1987

Количество страниц: 278

Добавлена в каталог: 08.12.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Ignorable sampling mechanisms      245
Implicit model      256
Imputation      (see Filling in for missing values)
Income nonresponse      65 227—230
Incomplete-data likelihood      134
Incompletely-classified data      (see Partially classified contingency tables)
Independent variables, missing values in      153—157 196 203
Inestimable parameters      119—124 239
Inference based on maximum likelihood, theory      84—88
Information/information matrix      85 98
Information/information matrix, complete      137—138
Information/information matrix, expected      85 96 128 137 138 145
Information/information matrix, fraction missing      137—138
Information/information matrix, missing      137—138 139 194 257
Information/information matrix, observed      85 96 128
Instrumental variables      (see Heckman’s two-step method Restrictions
Interactions in contingency tables      (see Association in
Interactions in regression      154
Interval estimation      84 105—107
Interval estimation, RLS      209—216
Ireland, C. T.      59 72
Irregularly-spaced time series      (see Time series models)
Item nonresponse      13 15 16 60 66—67 247—248
Iterative methods      26 127—141 185
Iterative proportional fitting algorithm      204
Iterative proportional fitting algorithm to known margins      (see Raking)
Iteratively reweighted least squares      (see IRLS)
Jackknife      71
Jarrett, R. G.      22 27 34 36 37
Jeffreys’ prior for normal sample      104
Jenkins, G. M.      162 168
Jenkins, J. G.      19
Jennrich, R.      1 157 158 159 160 168 169
Jensen’s Inequality      135
Johnson, J. H.      71
Jones, R. H.      162 168
Kalfon, G.      60 65 72
Kalman filter models      162 166—168
Kalman, R. E.      162 165 168
Kaufman, L.      183 193
Kempthorne, O.      21 36
Kim, J. O.      43 48 49
Kish, L.      60 65 72
Kleinbaum, D. G.      41 48
Krzanowski, W. J.      203 216
Kullback, S.      59 72
Kulldorff, G.      22 241
Kupper, L. L.      41 48
Lack of fit      239 (see also Goodness-of-fit statistics)
Laird, N. M.      6 18 129 130 131 135 136 137 139 145 150 152 168 209 210 216 237 240 241 262 264
Langwell, K.      169
Laplace (double exponential) distribution      96
Large sample likelihood theory      84—86
Latent variable model      148—149
Latin square      26 37—38
Least squares analysis      21 38
Least squares analysis via EM      152—153
Least squares analysis, estimation      22—23 25—32
Ledolter, J.      165 168
Leprosy      177
Li, K. H.      255 264
Likelihood ratio statistic      87—88 158 161 186 192 205 217 239
Likelihood with missing data      89—90 218—220
Likelihood with monotone missing data      (see Factored)
Likelihood, equation      81 128
Likelihood, function      79—81
Likelihood, ignoring the missing-data mechanism      89
Likelihood, test for MCAR      193
Lillard, L.      227 228 229 230 241
Lindley, D. V.      85 95 105 124
Linear estimators      70
Linear model      21—24 113
Linear model with missing outcomes      21—38 152—153 222—230 232—235
Linear model with missing predictors and outcomes      153—157 196 203
Linear regression      (see Linear model)
Listwise deletion      (see Complete-case methods)
Little, R. J. A.      6 19 57 58 62 71 72 92 95 104 107 124 129 139 144 145 154 155 168 169 170 193 195 198 200 205 207 209 212 215 216 217 230 235 237 241 242 245 248 250 254 261 264
Local maxima of the likelihood      200 206 208
Logistic regression model      57 196—206 230 254 262
Loglikelihood function      80—81
Loglinear models      172 185—193 203—206 235 241
Longitudinal study      4 157
Lord, F. M.      120 124
Lost information      (see Information/information matrix missing)
Louis, T. A.      137 139
M step (maximization step)      130 (see also EM algorithm)
Madow, W. G.      50 51 71 72 254 262 264
Main effects in contingency tables      185
MAR      (see Missing at random (MAR))
Marini, M. M.      7 8 19 109 125
Markov model      129
Matching of files      121
Matching to fill in respondent values      (see Hot deck imputation)
Matthai, A.      42 48
Maximizing over the missing data      92—95
Maximum likelihood (ML)      12 37 81—84 98 Factored Likelihood)
MCAR      (see Missing completely at random (MCAR))
McCullagh, P.      171 193
McKendrick, A. G.      129 139
Mean imputation      6 44—47 60 61—62 74
Mechanisms leading to missing data      (see Ignorable missing-data mechanism Nonignorable
Mehra, R. K.      165 168
Meltzer, A.      166 167 169
Missing at random (MAR)      10 14—17 90
Missing completely at random (MCAR)      14—17 39
Missing information      (see Information matrix missing)
Missing information principle      129 (see also EM algorithm)
Missing values as parameters      92—95 126
Missing-data indicator      89
Missing-plot techniques      (see Analysis of variance (ANOVA))
Missing-value covariates      27—36
Misspecification of model      (see Sensitivity of inference)
Mixed normal and nonnormal data      195—217
Mixed-effects analysis of variance      149 157—161
Mixed-up bivariate normal sample      93
Mixture models      207—216
Mixture models for respondent and nonrespondent strata      230—235 262—264
ML      (see Maximum likelihood (ML))
Model-based methods      7
Model-based methods for surveys      52—53 244—265
Monotone pattern of missing data      4 7 8 14 17 19 98—119 172—181 188 215 244 248
Monotone pattern of missing data for bivariate counted data      174—181
Monotone pattern of missing data for multivariate normal data      109—112
More observed variables      7 14 119 207
Morgensfem, H.      41 48
Morrison, D. F.      125
Multinomial data      4—5 131—132 138 171—194 196
Multinomial data, distribution      95 265
Multiple correlations      124
Multiple imputation      61 255—259 264 265
Multiple linear regression      84 142 152—157 Normal
Multiple maxima      200 207 208
Multivariate analysis of variance      203—206
Multivariate analysis of variance, data      16—18 39—49
Multivariate analysis of variance, normal      81 82 140 142—170
Multivariate analysis of variance, normal mixtures      207
Multivariate analysis of variance, normal monotone data      109—112 116—119
Multivariate analysis of variance, regression      155—157 215—216
Multivariate analysis of variance, t samples      211—216
Multiway tables      (see Categorical data)
Muscative Coronary Risk Factor Study      4
Nearest-neighbor hot deck      65—66
Nested missing-data pattern      (see Monotone pattern of missing data)
Nested models      87
Never jointly observed      120
Newton — Raphson algorithm      128 130 140 146 158 165
Nie, N. H.      6 19
Nisseison, H.      72 262 264
Noncontact      (see Unit nonresponse)
Nonignorable adjustment cell model      260—261
Nonignorable missing-data mechanism      8—13 19 89 90 218—241 248 259—264
Nonignorable missing-data mechanism with follow-ups      243 262—264
Nonignorable missing-data mechanism, sampling mechanism      246
Noninterview adjustments      (see Unit nonresponse)
Nonlinear estimators      71
Nonlinear regression      93
Nonrandomly missing data      (see Nonignorable missing-data mechanism)
Nonrandomly missing data as random subsampling      54
Nonrandomly missing data, mechanism      (see Ignorable missing-data)
Nonrandomly missing data, strata      3 53 219—220
Nonrandomly missing data, weights      58
Nordheim, E. V.      235 241
Normal data      196—217 222—235
Normal data, censored      223 224—225
Normal data, grouped with covariates      222—223
Normal data, linear regression model      83 99—101 196—217
Normal data, nonignorable models      223—230
Normal data, sample      82—83 93—94
Observed at random (OAR)      14—17
Observed likelihood      134
Odds ratio      41 48 194
Odds ratio of response rates      75
Oh, H. L.      53 56 62 72 74
Olkin, I.      72 196 216 262 264
Olsen, A. R.      7 8 19 109 125
Olsen, R. J.      230 242
Optimal, asymptotic properties      86
Orchard, T.      6 19 129 138 139 144 169
Orthonormal linear combinations      34—36
Outliers      210 215
Oxspring, H. H.      177 179 193
p-value      87 192
Pairwise available-case methods      42
Panel study      7 40 109—112
Parameters of conditional association      120
PariS, R.      71
Partial correlation      120—124
Partial information      (see Information matrix observed)
Partially classified contingency tables      14 171—194 235—241
Pattern of missing data      4 248
Patterned covariance matrices      146—148
Pearce, S. C.      27 36
Pearson chi-squared statistic      186 192
Petrie, T.      139
Pettitt, A. N.      211 216
Phillips, G. D. A.      162 168
Pivoting      (see Sweep operator (SWP))
pixels      183
Poisson data      80 82 173
Polynomials of regressors      154
Positron emission tomography (PET)      183—185
Posterior distribution      (see Bayesian inference)
Poststratification      58 66 251 253 258 259 265
Poststratified estimator of the mean      (see Poststratification)
Potthoff, R. F.      158 159 169
Power transformation      227
PRECISION      180—181
Precision of estimation from filled-in data      255—259 (see also Asymptotic covariance matrix of parameters or estimates)
Predicting missing values      (see Filling in for missing values)
Predictive Bayesian approach      230—235 (see also Multiple imputation)
Predictive distribution      231 256
Preece, D. A.      27 36
Pregibon, D.      235 242 261 264
Press, S. J.      93 95
Principal component analysis      142
Prior distribution      (see Bayesian inference)
Probability of response      (see Response propensity)
Probability sampling      9 51 245
Probit regression of response      57 229—230 with
Propensity scores      57
Propensity scores, stratification on      74
Proper imputation      259
Q-function      134 (see also EM algorithm)
Quasi-randomization inference      53—75
Quick missing-data adjustments      39 49
Raked estimate      59 74
Raking      59 74—75
Random effects model      149 158 161
Random effects model for time series      165
Random sampling with replacement      69
Randomization inference for surveys      6 50—75
Randomized block      26 31 35—36
Randomly missing data      (see Missing completely at random (MCAR) Missing
Rao, C. R.      35 36 82 84 95 135 139
Ratio estimator      254
Ratios, imputation of      67
Reece, J. S.      230 241
Refined and coarse classifications      177—179
Refusal to answer      1 (see also Income nonresponse)
Regression      9 41 43 48 49 83 84 108 116 152—157 170
Regression, estimator      102 254
Regression, imputation      6 45—47 61 253—255 Filling
Regression, interactions in      154 (see also Linear model)
Regular exponential family      96 138—139 143
Reinisch, J. M.      155 169
Repeated imputations      (see Multiple imputation)
Repeated measured model      157—161
Replacement units      60
Residuals, added to imputations      61 (see also Filling in for missing values stochastically to
Response indicator matrix      19 89
Response propensity      57
Response rates      56 (see also Pattern of missing data)
Restricted covariance matrix      146—152 157—161
Restrictions on regression coefficients      224 226
Reverse sweep (RSW)      115 126
Reviews of missing-data literature      6 39 262
Robust estimation      209—216
Robust estimation, inference      263 (see also Sensitivity of inference)
Robust estimation, regression      211—216
Robust estimation, variances, correlations      209—216
Rosenbaum, P. R.      57 72
Rosenblum, L. A.      169
Rounded data      (see Grouped and rounded data)
Roy, S. N.      158 159 169
Royall, R. M.      254 264
Rubin, D. B.      6 7 8 14 18 19 30 31 33 34 37 43 48 57 61 66 71 72 89 90 93 95 109 117 119 120 121 122 124 125 126 129 130 131 135 136 137 139 145 147 148 149 150 152 168 169 170 183 193 208 209 210 211 212 216 229 230 231 232 234 242 244 245 246 249 250 254 255 256 257 258 259 262 264
Samdal, C. E.      58 71 73
Sample mean vector and covariance matrix      17
Sample surveys      16 50—75
Sampling frame      9
Sampling mechanism      245
Sampling variance      67—71
Sampling weight      55
Samuhel, M. E.      71 241
Sande, I. G.      66 71 72
Satterthwaite, F. E.      257
Saturated model      188
Schenker, N.      255 257 258 259 265
Scheuren, F. S.      53 56 61 62 72 74
Schieber, S. J.      61 72
Schluchter, M. D.      157 158 159 160 168 195 198 200 205 207 216 217
Schulzinger, M. F.      169
Score function      81 128
Scoring algorithm      128 130 145
Scott, A. J.      93 95 246 265
selection model      223—230 242 262—264
Sensitivity of inference      225 231—235 259 261
Sensitivity of inference with followups      262—264
Sex differences      155—157
Shepp, L. A.      183 193
Shumway, R. H.      162 165 166 167 169
Significance levels      (see P-value)
Simple random sampling      51 53
Simulation of posterior distributions      105—107
Simulation studies of missing-data methods      43 215 262—264
Small-sample inference      104—107 125
Smith, H.      23 36 117 124
Smith, J. P.      227 228 229 230 241
Smoothing      165 253
Snedecor, G. W.      23 37 101 125 150 169
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте