Авторизация
Поиск по указателям
Berger J.O. — Statistical decision theory and bayesian analysis
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Statistical decision theory and bayesian analysis
Автор: Berger J.O.
Аннотация: "The outstanding strengths of the book are its topic coverage, references, exposition, examples and problem sets... This book is an excellent addition to any mathematical statistician's library." -Bulletin of the American Mathematical Society In this new edition the author has added substantial material on Bayesian analysis, including lengthy new sections on such important topics as empirical and hierarchical Bayes analysis, Bayesian calculation, Bayesian communication, and group decision making. With these changes, the book can be used as a self-contained introduction to Bayesian analysis. In addition, much of the decision-theoretic portion of the text was updated, including new sections covering such modern topics as minimax multivariate (Stein) estimation.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Издание: 2nd edition
Год издания: 1985
Количество страниц: 617
Добавлена в каталог: 04.12.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Likelihood principle, violated by risk functions 30
Likelihood ratio 146 153 484
Limited translation estimators 219
Lin, P.E. 369
Lindley, D.V. 28 66 75 106 119 121 148 151 156 183 186 195 198 266 275 277 283 286 503
Lindman, H. 119 124 152 153 223 503 504
Lindsay, B.G. 101 178
Linear opinion pool 273
Location parameters 83 497
Location-scale parameters 88 401
Lord, F.M. 104 169
Lorden, G. 481
Loss functions 3
Loss functions for inference problems 64 166 261
Loss functions for randomized rules 13
Loss functions from utility functions 57
Loss functions in sequential analysis 433 434 511
Loss functions, "0—1 and " " 63
Loss functions, absolute error 63
Loss functions, invariant 393
Loss functions, linear 62
Loss functions, m-inner truncated 460
Loss functions, matrix 7 325
Loss functions, quadratic 62
Loss functions, regret 60 377
Loss functions, robustness of 61 250
Loss functions, squared-error 60
Loss functions, vector valued 68
Louis, T.A. 100 177
Lower boundary point 335
Lower quantant 333
Luce, R.D. 281
Lush, J.L. 168
m-inner truncated Bayes risk 460 461 468 469
m-inner truncated loss 460
m-step inner look ahead procedure 461
m-step look ahead procedure 455 456 459 461
m-truncated Bayes risk 448 449 451 461 467
m-truncated procedures 449
Mackay, J. 251
Magwire, C.A. 469
Mandelbaum, a. 550
Marazzi, A. 217 221 222
Marden, J.I. 539
Marginal density 95 128 130 199
Marginal density in empirical Bayes theory 96 169 173
Marginal density in robustness studies 199
Marginal density in sequential analysis 445 450
Marginal density, as likelihood function 99 177 200
Marginal density, as likelihood function, relative likelihoods 201
Marginal density, exchangeability of 104
Marginal density, information about 95
Marginal density, moments of 101
Marginal density, type II maximum likelihood 99 174 223
Maritz, J.S. 104 169
Marschak, J. 53
Martz, H.F. 169 215
Matheson, J.E. 277
Matthes, T.K. 539
McConway, K.J. 277
Meeden, G. 228 543 549 550
Meinhold, R.J. 177
Menges, G. 215
Mensing, R.W. 277
Miescke, K.J. 541
Milnes, P. 420
Minimax analysis 308
Minimax analysis, comparison with Bayesian analysis 373 379
Minimax analysis, conservatism 308 376
Minimax analysis, finite parameter space 354
Minimax analysis, finite parameter space, classification problems 357
Minimax analysis, finite parameter space, testing simple hypotheses 355
Minimax analysis, game theory 310
Minimax analysis, least favorable prior distribution 350 352
Minimax analysis, regret 376 387
Minimax analysis, sequential 501
Minimax analysis, statistical games 347
Minimax analysis, techniques of solution 349
Minimax analysis, techniques of solution, direct method 349
Minimax analysis, techniques of solution, guessing a least favorable prior 350
Minimax analysis, techniques of solution, guessing an equalizer rule 353
Minimax analysis, techniques of solution, using invariance 418
Minimax decision rules 18 see
Minimax decision rules, admissibility and inadmissibility of 371
Minimax decision rules, classes of 359 363 369
Minimax decision rules, sequential 501
Minimax principle 18
Minimax regret 377 387
Minimax strategy 317
Minimax theorem 345
Mintz, M. 353
ML-II estimation see "Type II maximum likelihood"
Models and exchangeability 106
Models and objectivity 110
Models, compromising between 176
Models, robustness of 248
Models, separation from prior 283
Moeschlin, O. 580
Monotone decision problems 530
Monotone decision problems, estimation 534
Monotone decision problems, multiple decision 530
Monotone decision rules 532 535
Monotone likelihood ratio 357 500 526
Monotone likelihood ratio and uniformly most powerful tests 524
Monotonization of a decision rule 533 535 536
Morgenstern, O. 310
Morris, C. 168—170 172 174 175 178 183 189 194 195 215 219 221 244 361 365 369
Morris, P.A. 277
Moses, L.E. 577
Mousa, A. 369
Muirhead, R.J. 361
Multinomial distribution 562
Multinomial distribution, conjugate prior for 287
Multiple decision problems see "Finite action problems"
Multivariate normal mean 560
Multivariate normal mean, as location vector 83
Multivariate normal mean, Bayesian analysis with normal prior 139
Multivariate normal mean, Bayesian analysis with normal prior, HPD credible set 143
Multivariate normal mean, conjugate prior for 288
Multivariate normal mean, empirical Bayes estimation 169 173 386
Multivariate normal mean, gamma minimax estimation 222
Multivariate normal mean, generalized Bayes estimators 543
Multivariate normal mean, generalized Bayes estimators, admissibility and inadmissibility 552
Multivariate normal mean, hierarchical Bayes estimation 183 190 386
Multivariate normal mean, inadmissibility of sample mean in 3+ dimensions 256 360 552
Multivariate normal mean, minimax estimators with Bayesian input 220 365 366 368 386
Multivariate normal mean, minimax estimators, class of 363
Multivariate normal mean, minimax estimators, conflict with Bayes 367
Multivariate normal mean, minimax estimators, sample mean 383
Multivariate normal mean, restricted risk Bayes estimation 220
Multivariate normal mean, robust Bayesian analysis of 236
Multivariate normal mean, robust Bayesian analysis of, credible regions 239 242
Multivariate normal mean, robust Bayesian analysis of, estimation 238 242
Multivariate normal mean, robust Bayesian analysis of, for independent coordinates 243
Multivariate normal mean, robust Bayesian analysis of, robust priors 236 242
Multivariate normal mean, robust Bayesian analysis of, with partial prior information 240
Multivariate normal mean, robust Bayesian analysis of, with t-priors 245
Murphy, A.H. 206
Nachbin, L. 408
Nash, J.F., Jr. 281
Naylor, J.C. 262
Negative binomial distribution 562
Negative binomial distribution, conjugate prior for 287
Negative binomial distribution, likelihood function for 28
Nell, D.G. 182
Nelson, W. 353
Neyman — Pearson lemma 524
Neyman, J. 22 23 523—525
No-data problems 7 13 17 19
Noda, K. 537
Noninformative prior see "Prior distribution"
Normal distribution 559 see
Normal distribution as location density 83
Normal distribution as location-scale density 88
Normal distribution as maximum entropy distribution 93
Normal distribution as scale density 85
Normal distribution, invariance in estimation 410 413
Normal distribution, noninformative prior for 84
Normal form of Bayesian analysis 160
Normal mean 559
Normal mean, admissibility and generalized Bayes estimation 543 550 552
Normal mean, admissibility of sample mean 548
Normal mean, Bayesian analysis with noninformative priors 137 289
Normal mean, Bayesian analysis with normal priors 127
Normal mean, Bayesian analysis with normal priors, estimation 136
Normal mean, Bayesian analysis with normal priors, finite action problems 166
Normal mean, Bayesian analysis with normal priors, HPD credible set 140 208
Normal mean, Bayesian analysis with normal priors, one-sided testing 147 164 210
Normal mean, Bayesian analysis with normal priors, posterior robustness 208 210 211 212
Normal mean, Bayesian analysis with normal priors, testing a point null 150 211 212 293
Normal mean, Bayesian analysis with t-priors 246 268
Normal mean, continuous risk functions in estimation 545
Normal mean, estimating a positive 135
Normal mean, gamma minimax estimation 216
Normal mean, invariant estimation 394 399
Normal mean, invariant one-sided testing 394 396
Normal mean, limited translation estimates 219
Normal mean, minimax estimation 350
Normal mean, minimax one-sided testing 349
Normal mean, minimax sequential estimator 501
Normal mean, ML-II prior for 235
Normal mean, optimal sample size in estimation 435
Normal mean, optimal sample size in testing 437
Normal mean, robust Bayesian analysis 239
Normal mean, sequential estimation with normal priors 447
Normal mean, sequential testing with batches 512
Normal mean, SPRT for simple hypotheses 487 494
Normal mean, testing a point null hypothesis 20 148 268
Normal mean, UMP invariant test 428
Normal mean, UMP one-sided testing 529
Novick, M.R. 89 106 183 251
O'Bryan, T.E. 169
O'Hagan, A. 137 249
Objectivity 90 109 125 153 281
Olkin, I. 361
Oman, S.D. 369
Orbits 396
p-values 147 151 155
Paick, K.H. 94 232
Panchapakesan, S. 68
Patel, C.M. 100 169
Pearson, E.S. 22 523—525
Peng, J.C.M. 361 363 370
Peters, S.C. 76 96
Phillips, L.D. 28 503
Pilz, J. 432
Pitman, E.J.G. 399 400
Pitman’s estimator 399 405
Poisson mean 562
Poisson mean, complete class for 553
Poisson mean, conjugate prior for 130
Poisson mean, empirical Bayes estimator 178 297
Poisson mean, inadmissible estimator 360
Poisson mean, minimax estimator 360 369 383
Poisson mean, noninformative prior for 114
Polasek, W. 206 248
Portnoy, S. 537
Post-experimental and pre-experimental see "Conditional perspective"
Posterior Bayes action 159
Posterior Bayes risk 446 447
Posterior distribution 126 445
Posterior expected loss 157
Posterior mean 134 136 161
Posterior odds ratio 146
Posterior variance and covariance 136 139
Power function 526
Pratt, J.W. 30 138 148 215 252 286 503
Predictive analysis 66 157
Predictive distribution 95 157
Preposterior analysis 432 see
Preposterior analysis, optimal fixed sample size 433 434
Press, S.J. 183 278 361 370
Principle of rational invariance 490
Prior distribution 4 5
Prior distribution, classes of 97
Prior distribution, classes of, -contamination 98 100 197 206 222 232 233
Prior distribution, classes of, in hypothesis testing 154
Prior distribution, classes of, of given functional form 97 197
Prior distribution, classes of, of given structural form 97
Prior distribution, conjugate 130
Prior distribution, construction from marginal 94
Prior distribution, construction from marginal, distance approach 103
Prior distribution, construction from marginal, ML-II approach 101
Prior distribution, construction from marginal, moment approach 101
Prior distribution, construction of subjectively 77
Prior distribution, construction of subjectively, CDF determination 81
Prior distribution, construction of subjectively, elicitation difficulties 76 82 112
Prior distribution, construction of subjectively, given a functional form 78 245
Prior distribution, construction of subjectively, histogram approach 77
Prior distribution, construction of subjectively, multivariate 81 112
Prior distribution, construction of subjectively, relative likelihood approach 77
Prior distribution, construction of subjectively, using the robust form 237 240
Prior distribution, hierarchical 106 180 237 245
Prior distribution, improper 82 87 132 160
Prior distribution, improper, as an approximation 90 229
Prior distribution, improper, inadmissibility of 254
Prior distribution, invariant (right and left) and relatively invariant 84 85 87 290 409 413 416
Prior distribution, least favorable 350
Prior distribution, maximum entropy 90
Prior distribution, ML-II 99
Prior distribution, noninformative 33 82 87 132 135 160
Prior distribution, noninformative and classical statistics 137 406
Prior distribution, noninformative and entropy 92
Prior distribution, noninformative and invariance 83 398 406 409 412 413
Prior distribution, noninformative and minimaxity 309 350 378
Prior distribution, noninformative as an approximation 90 229
Prior distribution, noninformative for binomial parameters 89
Prior distribution, noninformative for location parameters 84
Prior distribution, noninformative for location-scale parameters 88 409
Prior distribution, noninformative for Poisson parameters 114
Prior distribution, noninformative for scale parameters 85
Prior distribution, noninformative in hierarchical situations 187 192
Prior distribution, noninformative, Jeffreys’ prior 87
Prior distribution, noninformative, robustness of 229
Prior distribution, reference informative 153
Prior distribution, robust priors 228 236 245
Prior distribution, robustness of see "Robustness"
Proschan, F. 136
Purves, R.A. 159 259
R-better 10
R-equivalent 10
Rabena, M. 231
Raiffa, H. 53 57 68 82 130 151 160 277 281 510
Ralescu, D. 550
Ralescu, S. 550
Ramsay, J.O. 251
Ramsey, F.P. 121
Randomized decision rules 12 18 36 40 315 348 397
Rao — Blackwell theorem 41
Rao, C.R. 41 169 172 178 365 550
Rationality 120 198
Rationality and invariance 390
Rationality of Bayesian analysis 120 198
Rationality of game theory and minimax analysis 308 318 371
Rationality, type II 34
Ray, S.N. 455
Reilly, A. 183
Reinsel, G.C. 172 178 365
Restricted risk Bayes principle 22
Rewards 47
Реклама