Авторизация
Поиск по указателям
Browder A. — Mathematical Analysis: An Introduction
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Mathematical Analysis: An Introduction
Автор: Browder A.
Аннотация: Among the traditional purposes of such an introductory course is the training of a student in the conventions of pure mathematics: acquiring a feeling for what is considered a proof, and supplying literate written arguments to support mathematical propositions. To this extent, more than one proof is included for a theorem - where this is considered beneficial - so as to stimulate the students' reasoning for alternate approaches and ideas. The second half of this book, and consequently the second semester, covers differentiation and integration, as well as the connection between these concepts, as displayed in the general theorem of Stokes. Also included are some beautiful applications of this theory, such as Brouwer's fixed point theorem, and the Dirichlet principle for harmonic functions. Throughout, reference is made to earlier sections, so as to reinforce the main ideas by repetition. Unique in its applications to some topics not usually covered at this level.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1996
Количество страниц: 370
Добавлена в каталог: 11.12.2011
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Infimum 15
Injective 3 178
Inner product 128 178 271 282
Integers 4
Integrable 230
Integral of differential form 294
Integral of form over manifold 301
Integral of nonnegative function 228
Integral of simple function 227
Integral, change of variables 112
Integral, existence 101—105
Integral, improper 114
Integral, improper is a measure 227 228
Integral, linear change of variables 241
Integral, linearity of 227 229
Integral, Riemann 98—114 201 231—233
Integral, smooth change of variables 241—244
Integration by parts 112 247
Interchange of limit and 113
Interchange of series 113
Interchange, linearity of 230
Interior 125
Interior point 124
Intermediate Value Theorem 59
Intersection 1
interval 18—19
Interval in 204
Interval, closed 19
Interval, open 19
Intervals, nested sequences 19
Inverse function 60 191
Inverse function theorem 192 257
Isolated point 125
Isomorphism 282
Isomorphism, natural 270
Jacobi, C.G.J 252
Jacobian 182 294
Jacobian matrix 196
Jensen, J.W.L 252
Jordan, C 121
Jordan, C, kernel 178
Kolmogorov, A 221
kronecker 6 269 276
Kronecker epsilon 276 311 230
Kronecker, L 54
Kronecker, multi-index 271
Lagrange multipliers 266
Lagrange, J. — L 95 96
Laplacian (Laplace operator) 314
Largest integer in 15
Lebesgue, H 173 221 252
Leibniz, G 53 82 95 121
Lemma 291
Lemniscate 258
Level surface 194
Levi — Civita, T 284
Levi, B 228
Liminf 34
Liminf of sets 219
Limit point 125
Limsup 34
Limsup of sets 219
Lindemann, F 27
Line segment 185
Linear algebra 176 181
Linear functional 269
Linear transformation 176 240
Linear transformation, metrics on 179
Liouville's theorem on algebraic numbers 20
Liouville's theorem on harmonic functions 317
Liouville, J 20 27 219
Lipschitz condition 138
Local coordinate 255
Locally connected 152
Lower semicontinuous 70 159
Lower sum 100
L’Hospital, G. — F.-A 96
L’Hospital’s Rule 86
Manifold 253 254
Manifold, construction of 258—259
Manifold, examples of 256—258
Manifold, orient able 263
Manifold, orientation of 263
Manifold, oriented 263
MAP 3
Map, closed 134
Map, linear 176
Map, open 134
Mapping (see Map)
Matrix 176—178
Matrix product 177
Maximal 13
Maximal rank 259
Maximum principle 316
Maximum, existence of 59 142
Maximum, local 83 184 266
Maxwell, J.C 321
Mean value inequality 186
Mean value theorem 83 185
Mean Value Theorem for harmonic functions 315
Mean Value Theorem for Integrals 108
Measurability criteria 224
Measurable function 223
Measurable, Lebesgue 213 215—218
Measure 206
Measure, Borel 206
Measure, counting 203
Measure, determined by -system 238 239
Measure, Hausdorff 215 321
Measure, inner 220 222
Measure, Lebesgue 213 215
Mertens, F 53
Metric 127
Metric space 128—131 214 236
Metric, product 132
Metric, standard on 129
Metric, standard on R 128
Metric, uniform on C(X, Y) 145
Miintz — Szasz theorem 174
Minimal 13
Minimum, existence of 142
Minimum, local 83 184 266
Minkowski, H 252
Moebius strip 258 267 319
Moebius, A.F 283
Monge, G 267
Monotone, convergence theorem 228 248
Monotone, function 56
Monotone, sequence 33 64
Monotone, set function 203 209
Multinomial coefficient 190
Nabla ( ) 289
Natural 176
Neighborhood 56 124
Nested compact sets 141
Net 153
Newton, I 53 95 121
Nonsingular 178
Norm 129
Normal derivative 314
Normal vector 260
Normal vector field 312
Null space 178
Numbers, algebraic 20
Numbers, complex 25
Numbers, extended real 15 203
Numbers, natural 2 4
Numbers, operations 223
Numbers, rational 5
Numbers, rational countability of 7
Numbers, real 15
Numbers, real existence of 21 23
Numbers, real uncountability of 19
Numbers, satanic 221
Numbers, transcendental 20
Open cover 140
Open set 123 215
Operator norm 179
Oriented, positively 263
Orthogonal transformation 240
Osgood, W.F 137 153
Ostrogradski, M.V 321
Outer measure 209
Outer measure, Hausdorff 210 221
Outer measure, Lebesgue 210
Outer measure, Lebesgue — Stieltjes 210 221
Outer measure, metric 214 221
Parse val’s relation 169
Partial derivative, Leibniz notation 197
Partial derivative, multi-index notation 190
Partial derivatives 186 191
Partial derivatives, higher order 189
Partial derivatives, mixed 189
Partial order 3
Partition 2 98
Partition of unity 298 299
Path 159
Path, length of 159
permutations 273
Perron FVobenius theorem 319
Picard’s Theorem 138
Piecewise smooth 168
Plato 26
Poincar 6
Point mass 203
Power series 90
Power series of matrices 181
Power set 2
Precompact 144
primitive 110
Projection map 133
Pseudometric 166 220 236
Radius of convergence 90
Radon, J 221
RANGE 3 178
refinement 98
Relation 2
Relation, equivalence 2 217
Ricci, G 284
Riemann integral (see Integral)
Riemann sum 99
Riemann — Lebesgue lemma 168
Riemann, B 53 121 267
Riemannian structure 293
Riesz — Fischer theorem 237
Riesz, F 252
Rogers, L.J 252
Rolle, M 96
Root, existence of 18
Row vector 183 269
Russell, B 27
Schwarz, H.A 109
Second axiom of countability 131
Seidel, P 73
Selection 98
Separable 126 220
SEQUENCE 4 28
Sequence in topological space 135
Sequence of functions 62
Sequence of measures 208
Sequence, Cauchy 36 136
Sequence, convergent 28
Sequence, divergent 28
Sequence, monotone 33
Sequence, uniformly Cauchy 63
Series 39
Series, absolutely convergent 40
Series, alternating 43
Series, Cauchy product of 49
Series, comparison test 40
Series, conditionally convergent 40
Series, engineers test 39
Series, for e 42
Series, Fourier 122 164
Series, geometric 41
Series, harmonic 30 41 42
Series, partial sum 39
Series, ratio test 42
Series, rearrangement of 45
Series, root test 41
Series, telescoping 41
Series, trigonometric 174
Series, unordered 47
Set 1
Set, Borel 205 214 215 220 224
Set, closed 124
Set, convex 96 152
Set, directed 53
Set, finite 6
Set, infinite 6
Set, Lebesgue measurable 248
Set, unmeasurable 217
Sierpinski, W 154 174
Sign of permutation 273
Simple function 225
Simple function, canonical representation 225
Smooth 254 255
Smooth, forms 286
Space, door 150
Space, Euclidean 123
Space, Hausdorff 135
Space, Hilbert 130
Space, metric 128
Space, topological 123
Square root algorithm 31
Stokes, G 73 321
Stokes’ Theorem 303
Stokes’ theorem, classical case 319
Stone Weierstraas theorem 158
Stone, M 158 174
Stone’s theorem 157
Subgroup 218
Subsequence 34
subspace 131
Summable 230
Summation by parts 44
Summation convention 281
Support line 81
Supremum 15
surface 253 257
Surjective 3 178
Symmetric tensor 282
Tangent bundle 260
Tangent space 253 260
Tangent vector 260
Tangent vector, characterization of 261 262
Taylor polynomial 89 191
Taylor, B 96
Taylor’s Theorem 89 96 120
Taylor’s theorem in n variables 190
Tensor field 285
Tensor field of class 286
Tensor product 271
Tensor, alternating 272
Tensor, covariant 270
Tensor, elementary 283
Tensor, rank of 270
Tensors of rank r basis for 271
Thomson, W. (Kelvin) 321
Toeplitz, O 26
Реклама