Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
DeWitt B.S. — The global approach to quantum field theory (Vol. 1)
DeWitt B.S. — The global approach to quantum field theory (Vol. 1)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: The global approach to quantum field theory (Vol. 1)

Автор: DeWitt B.S.

Аннотация:

There exists an anomaly today in the pedagogy of physics. When expounding the fundamentals of quantum field theory physicists almost universally fail to apply the lessons that relativity theory taught them early in the twentieth century. Although they usually carry out their calculations in a covariant way, in deriving their culational rules they seem unable to wean themselves from canonical methods and Hamiltonians, which are holdovers from the nineteenth century and are tied to the cumbersome C + 1)-dimensional baggage of conjugate momenta, bigger-than-physical Hilbert spaces, and constraints. There seems to be a feeling that only canonical methods are "safe"; only they guarantee unitarity. This is a pity because such a belief is wrong, and it makes the foundations of field theory unnecessarily cluttered. One of the unfortunate results of this belief is that physicists, over the years, have almost totally neglected the beautiful covariant replacement for the canonical Poisson bracket that Peierls invented in 1952.


Язык: en

Рубрика: Физика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2003

Количество страниц: 528

Добавлена в каталог: 27.11.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Wightman function thermal      618
Winding number      778
World function      281 533
Wronskian operator for scalar field      296
Wronskian operator for scalar field in Schwarzschild metric      629
Wronskian operator for spinor field      360
Wronskian operator for vector field      315
Wronskian operator role in Cauchy problem      57
Wronskian operator role in selection of Cauchy data      58
Wronskian relations for scalar field      301ff 306
Wronskian relations for scalar field in Schwarzschild metric      628—629
Wronskian relations for spinor field      364
Wronskian relations for vector field      315
Wronskian relations for “in-in” formalism      667
Wronskian relations for “in” and “out” mode functions      378
Yang — Mills charge      767—769
Yang — Mills charge, confinement of      767
Yang — Mills field      755ff
Yang — Mills field $\beta$—function for      760
Yang — Mills field boundary conditions for space of histories      771
Yang — Mills field coupled to gravitational field      793
Yang — Mills field field equation for      756
Yang — Mills field, action functional for      755
Yang — Mills field, asymptotic freedom of      760
Yang — Mills field, charge group for      769
Yang — Mills field, gauge invariant ultralocal metric for      757
Yang — Mills field, gauge transformations of      755ff
Yang — Mills field, gauge transformations of, homotopy of      773ff
Yang — Mills field, ghost operator for      757
Yang — Mills field, Jacobi field operator for      757
Yang — Mills field, renormalization of      485ff
Yang — Mills field, stress-energy density of      761
Yang — Mills field, trace anomaly for      762
Zero likelihood      146
Zeta function regularization      554ff
“in-in” formalism      662ff
“in-in” formalism for gauge theories      676ff
“in-in” formalism, action functional for      663
“in-in” formalism, advanced and retarded Green’s functions for      668
“in-in” formalism, connection on space of “in-in” field histories      677
“in-in” formalism, effective action for      674
“in-in” formalism, effective action for with gauge fields      680
“in-in” formalism, external sources for      672
“in-in” formalism, Feynman propagator for      669
“in-in” formalism, geodesic normal fields for      679
“in-in” formalism, horizontal projection operator for      678
“in-in” formalism, Jacobi field operator for      665
“in-in” formalism, Lagrangian for      664
“in-in” formalism, measure functional for      673
“in-in” formalism, measure functional for, with gauge fields      683
“in-in” formalism, mode functions for      666
“in-in” formalism, positive and negative frequency functions for      669
“in-in” formalism, supercommutator function for      667
“in-in” formalism, Vilkouisky’s connection for      679
“in-in” formalism, Wronskian relations for      667
1 2 3 4
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте