Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
DeWitt B.S. — The global approach to quantum field theory (Vol. 1)
DeWitt B.S. — The global approach to quantum field theory (Vol. 1)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: The global approach to quantum field theory (Vol. 1)

Автор: DeWitt B.S.

Аннотация:

There exists an anomaly today in the pedagogy of physics. When expounding the fundamentals of quantum field theory physicists almost universally fail to apply the lessons that relativity theory taught them early in the twentieth century. Although they usually carry out their calculations in a covariant way, in deriving their culational rules they seem unable to wean themselves from canonical methods and Hamiltonians, which are holdovers from the nineteenth century and are tied to the cumbersome C + 1)-dimensional baggage of conjugate momenta, bigger-than-physical Hilbert spaces, and constraints. There seems to be a feeling that only canonical methods are "safe"; only they guarantee unitarity. This is a pity because such a belief is wrong, and it makes the foundations of field theory unnecessarily cluttered. One of the unfortunate results of this belief is that physicists, over the years, have almost totally neglected the beautiful covariant replacement for the canonical Poisson bracket that Peierls invented in 1952.


Язык: en

Рубрика: Физика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2003

Количество страниц: 528

Добавлена в каталог: 27.11.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Functional      5
Functional derivative      5
Functional derivative left functional derivative      5
Functional derivative right functional derivative      5
Functional derivative, comma notation for      8
Functional derivative, covariant functional derivative      255ff
Functional integral for Bose oscillator      857—858
Functional integral for expectation values      662—663
Functional integral for Fermi doublet      830—831
Functional integral for Fermi oscillator      844
Functional integral for gauge fields      463 465 468 493—494 515—516 662—663
Functional integral for nonlinear fields      409
Functional integral for nonrelativistic particle in flat space      803
Functional integral for relativistic particle in Minkowski spacetime      935
Functional integral for simple Fermi system      813 817—818
Functional integral, Feynman’s integral      171ff
Fundamental domains (in path-integral homotopy)      227
Gamma function      1018
Gauge algebra      19
Gauge field      4
Gauge fixing      496
Gauge group      19
Gauge group, full gauge group      19
Gauge group, proper gauge group      19
Gauge group, rigidity of      488
Gauge invariant effective action      500
Gauge theories      456ff
Gauge theories without ghosts      513ff 676ff
Gauge theories, “in—in” formalism for      676ff
Gauge transformations      4 20
Gauge transformations for quantum electrodynamics      732
Gauge transformations little gauge transformations      20 770
Gauge transformations of gravitational field      101 784
Gauge transformations of Yang — Mills field      755
Gauge transformations, big gauge transformations      20 770
Gauge transformations, boundary conditions for      771
Gaussian integration over $\mathbb{R}^m_c\times\mathbb{R}^n_a$      994—996
Geodesic normal coordinates      275ff
Geodesic normal fields      513—514
Geodesic normal fields for “in-in” formalism      679
Geodetic parallel displacement matrix or operator      283—284 534ff
Ghost fields      22 472
Ghost fields, integrating out      493—494
Ghost fields, toy model for      868ff
Ghost number      22
Ghost operator      34 458
Ghost operator for gravitational field      785
Ghost operator for quantum electrodynamics      732
Ghost operator for Yang — Mills field      757
Ghost operator, mode functions for      399
Ghost operator, nonsymmetric ghost operator      101 Off
Ghost operator, propagator for      458 465
Ghost operator, Wronskian relations for      399
Ghosts for ghosts      959ff
Global conformal group      110ff
Graphs and subgraphs      700ff
Grassmann algebra      976
Gravitational field      783ff
Gravitational field, action functional for      783
Gravitational field, coupled with Yang — Mills field      793
Gravitational field, energy, momentum and angular momentum in      790—791
Gravitational field, gauge invariant ultralocal metric for      785—786
Gravitational field, gauge transformations of      101 784
Gravitational field, ghost operator for      785
Gravitational field, Jacobi field operator for      785
Gravitational field, one-loop effective action for      788
Gravitational field, one-loop finiteness of      788
Gravitational field, stress-energy density of      789
Green’s functions      see also Feynman propagator
Green’s functions of n-dimensional Laplacian operator      1021
Green’s functions, coherent      42ff
Green’s functions, equality of left and right      37
Green’s functions, for “in-in” formalism      668
Green’s functions, Landau      44
Green’s functions, off shell      42
Green’s functions, reciprocity relations for      38
Green’s functions, relations between      40
Green’s functions, retarded and advanced      36
Green’s functions, transformation laws for      45
Hamilton — Jacobi equations      215
Hamiltonian      52
Hamiltonian, Hamiltonian operator      231 259ff 262
Hamilton’s principle (of stationary action)      13ff 17 29
Harfle — Hawking vacuum      640
Harfle — Hawking vacuum, instability of      658
Harfle — Hawking vacuum, reactions of a monopole detectors to      646
Harfle — Hawking vacuum, temperature of      643
Harfle — Hawking vacuum, viewed as a gas      643ff
Hawking radiation      656
Heat kernel      275ff
Heat kernel for the spinor field      55Iff
Heat kernel, asymptotic expansion of      285 541
Heat kernel, recursion relations for      286 541
Heat kernel, Schwinger’s representation of      532
Helicity      905 909 914 919
Helicity, space inversion law for spinor helicity      728
Hole theory      370ff
Homotopy (in path integrals)      220ff
Homotopy (in path integrals), covering translations      222
Homotopy (in path integrals), fundamental domains      227
Homotopy (in path integrals), fundamental group      221
Homotopy (in path integrals), relation to homology and cohomology      223ff
Homotopy (in path integrals), universal covering space      221—2
Homotopy in quantum field theory      232—233
Horizontal projection operator      457
Horizontal projection operator for “in-in” formalism      678
Imperfect measurements      159
instantons      781—783
Integral of $(\sin\theta)^a(\cos\theta)^b$      1023
Integral of $(\sin\theta)^a(\cos\theta)^b$, corollaries of      1023—1025
Integration in $\mathbb{R}_C$ and $\mathbb{R}_Q$      979—81
Integration in $\mathbb{R}_C$ and $\mathbb{R}_Q$, Gaussian integration      994—996
Integration in $\mathbb{R}_C$ and $\mathbb{R}_Q$, integration over $\mathbb{R}^m_C\times\mathbb{R}^n_C$      990ff
Internal sources      79
Interpolating field      72
Interpolating field, invariance under changes of      73
Interpolating field, invariance under changes of, in quantum field theory      446ff
Invariance of ghost-free loop graphs      520ff
Invariance transformations      14ff
Invariance transformations, commutator of      17
Invariant flows      14ff
Invariant flows, existence implies massless fields      92
Invariants (physical observables)      25
Invariants (physical observables) in presence of ghost fields      492—493
Invariants (physical observables), absolute      25
Invariants (physical observables), conditional      25
Isotropic curvature      1042
Jacobi field operator      31
Jacobi field operator for gravitational field      785
Jacobi field operator for quantum electrodynamics      732—733
Jacobi field operator for Yang — Mills field      757
Jacobi field operator for “in-in” formalism      665
Jacobi field operator, self adjointness of      32
Jacobi fields (small disturbances)      30ff 236
Jacobi fields (small disturbances) as generators of finite disturbances      61
Jacobi fields (small disturbances), Cauchy problem for      56ff
Jacobi fields (small disturbances), quantum Jacobi fields      439
Jacobi identity for Peierls bracket      50
Jacobi identity for supercommutators      1005
Killing fields      80
Killing vector fields      107ff
Klein paradox, bosonic      335
Klein paradox, fermionic      372
Kruskal coordinates      630—631
Lagrangian      13
Lagrangian for linear scalar field      291
Lagrangian for massive linear vector field      312
Lagrangian for nonrelativistic particle in curved space      252
Lagrangian for spinor field      351
Lagrangian for spinor field, $\beta$-function for      925
Lagrangian for spinor field, $\lambda\varphi^4$ model      920ff
Lagrangian for spinor field, one-loop effective action for      923
Lagrangian for spinor field, physical mass for      928
Lagrangian for spinor field, renormalization group for      923
Lagrangian for spinor field, spontaneous symmetry breaking in      928—929
Legendre transform (relation between W and $\Gamma$)      413
Lehmann — Symanzik — Zimmermann (LSZ) theorem      427ff
Linear fields possessing invariant flows      396ff
Linear fields possessing invariant flows, Bogoliubov relations for      403
Linear fields possessing invariant flows, mode functions for      398
Linear fields possessing invariant flows, Wronskian relations for      398—399
Linear operators on super Hilbert spaces      1001—1002
Local conformal group      109
Local conformal group, structure constants with diffeomorphism group      109
Local conformal transformations      109
Local Lorentz frames (field of)      341
Localization-decoherence      200ff
Loop expansion      241ff 416ff
Loop expansion for gauge theories without ghosts      518
Loop expansion of reduced effective action      496ff
Lorentz frame bundle      341
Lorentz frame group      342
Lorentz group O(1, n-1), generators of      342 538—539
Manifest covariance      26ff
Many worlds      140 207
Many worlds, unobservability of splitting into      14Iff
Mass operator      745
Massless scalar field in compact universe      31 Off
Massless vector field      see Electromagnetic field
Measure functional      168
Measure functional for gauge fields      468 470 475
Measure functional for gauge fields loop decomposition of      478ff
Measure functional for Lagrangian path integral      217 257
Measure functional for phase-space path integral      219
Measure functional for “in-in” formalism      673
Measure functional, approximate expression for      170
Measure functional, role as volume density      173
Measure functional, role of in Wick rotation      481 692ff
Measurement situation      207
Measurement theory      117ff
Measurement theory, apparatus inertia      118
Measurement theory, compensation term      122
Measurement theory, disturbance in the apparatus      120
Measurement theory, electric field measurement      125ff
Measurement theory, error analysis      12Iff
Measurement theory, quantum theory of measurement      131 ff
Measurement theory, Stern — Gerlach experiment      123ff
Measurement theory, system and apparatus      117
Measurement theory, system-apparatus coupling      117
Minimal coupling to gravitational field      104
Minimal subtraction      704
Mode functions for Bose oscillator      850
Mode functions for electromagnetic field      397 904
Mode functions for Fermi oscillator      840
Mode functions for fourth order system      863
Mode functions for linear scalar field      297ff 309ff
Mode functions for massive antisymmetric tensor field      881—882
Mode functions for massive linear vector field      315 878
Mode functions for massive spin-1 field      899
Mode functions for massive symmetric tensor field      885—886
Mode functions for massless antisymmetric tensor field      971
Mode functions for massless spin-1 field      918
Mode functions for massless symmetric tensor field      907
Mode functions for scalar field in Schwanzschild black hole      628 633—635
Mode functions for spinor field      362ff 892 913
Mode functions for the effective action      430—1 503—4
Mode functions for “in-in” formalism      666
Mode functions, “in” and “out” mode functions      377ff
Modulation function      199ff
Momentum operator      183ff
Momentum operator and de Rham cohomology      191
Momentum operator, ambiguity in      184
Momentum operator, coordinate transformation law of      187
Momentum operator, position representation of      190ff
Monopole detector      620—1
Morse index      267
Morse index, application to path integration      271
Morse index, generalized Morse index      272ff
Morse index, Morse index theorem      271
Negative dimensional Euclidean spaces      1025—1026
Negative frequency function for boson fields      321
Negative frequency function for fermion fields      367
Negative frequency function for fields in nonstationary backgrounds      393—394
Negative frequency function for “in-in” formalism      669
Nonpolynomial systems      60
Nonrelativistic particle in curved space      252ff
Nonrelativistic particle in flat space      799ff
Nonrelativistic particle in flat space, functional integral for      803
Norm of a super Hilbert space vector      1000
O(1, n-1)      see Lorentz group
On shell      13
One-loop approximation to point-to-point amplitude      243
One-loop approximation, WKB (or semiclassical) approximation in general      247ff
One-loop finiteness of quantum gravity      509 788—789
One-particle scattering amplitude      386
One-particle-irreducible graphs      416 701
Operator dynamical equations      168
Orbits      20
Orbits, space of      20
Orientability of the real universe      711
Pair annihilation amplitude      385
Pair production amplitude      384
Pair production by black-hole collapse geometry      654—655
Pair production by constant electric field      741
Particle production by weak backgrounds      586ff
Particle production by weak backgrounds, production of photons      590
Particle production by weak backgrounds, production of scalar particles      589
Particle production by weak backgrounds, production of spinor particles      591
Path integrals      213ff
Path integrals in the covering space      225ff
Path integrals, ambiguity in      219ff
Path integrals, homotopy in      220ff
Path integrals, measure for Lagrangian path integral      217
Path integrals, measure for phase-space path integral      219
Pauli — Villars regularization      866
Peierls bracket      49ff
Peierls bracket, canonical covariance of      708
Peierls bracket, commutes with use of the dynamical equations      50
Peierls bracket, equivalent to Poisson bracket when system is standard canonical      54
Peierls bracket, identities satisfied by      50—51
Perturbative renormalizability      420
Physical observables      25 1002—1003
Pin$\pm(1,n-1)$      346
Planck units      625 784
Poincare group      107ff 357ff
Point-to-point amplitude      214
Point-to-point Green’s function      237
Polarization spinors for massive spinor field      891
Polarization spinors for massless spinor field      910
Polarization tensors for massive antisymmetric tensor field      882
Polarization tensors for massive symmetric tensor field      886
Polarization tensors for massless antisymmetric tensor field      971
Polarization tensors for massless symmetric tensor field      908
Polarization vector-spinors for massive spin-3/2 field      899
Polarization vector-spinors for massless spin-3/2 field      917
Polarization vectors for massive vector field      878
Polarization vectors for massless vector field      903—904
Pole operation in renormalization theory      701—702
Polynomial systems      60
Position mapping      179
Position representation      188ff
Positive frequency function for boson fields      321 331
Positive frequency function for fermion fields      367
Positive frequency function for fields in nonstationary backgrounds      391
Positive frequency function for “in-in” formalism      669
Probability amplitude      162
Probability as an emergent concept      208
Probability ensemble interpretation of      153ff
Probability irrational probabilities      150—151
Probability, rational probabilities      149—150
1 2 3 4
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте