Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Demmel J.W. — Applied Numerical Linear Algebra
Demmel J.W. — Applied Numerical Linear Algebra



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Applied Numerical Linear Algebra

Автор: Demmel J.W.

Аннотация:

Designed for use by first-year graduate students from a variety of engineering and scientific disciplines, this comprehensive textbook covers the solution of linear systems, least squares problems, eigenvalue problems, and the singular value decomposition. The author, who helped design the widely used LAPACK and ScaLAPACK linear algebra libraries, draws on this experience to present state-of-the-art techniques for these problems, including recommendations of which algorithms to use in a variety of practical situations.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1997

Количество страниц: 421

Добавлена в каталог: 26.11.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Roundoff error conjugate gradients (CG)      317
Roundoff error Cray      13 26
Roundoff error dot product      25
Roundoff error Gaussian elimination      25 44 57
Roundoff error geometric modeling      193
Roundoff error in logarithm      25
Roundoff error inverse iteration      231
Roundoff error iterative refinement      58
Roundoff error Jacobi's method for $Ax={\lambda}x$      253
Roundoff error Jacobi's method for the SVD      251
Roundoff error Jordan canonical form      146
Roundoff error Lanczos algorithm      305 364 369 377 378 381
Roundoff error matrix multiplication      25
Roundoff error orthogonal iteration      157
Roundoff error orthogonal transformations      101 123
Roundoff error polynomial evaluation      15
Roundoff error polynomial root finding      30
Roundoff error QR iteration      164
Roundoff error rank-deficient least squares      125 127 128
Roundoff error rank-revealing QR decomposition      131
Roundoff error simulating quadruple precision      27
Roundoff error substitution, forward or back      26
Roundoff error SVD      241 247
Roundoff error symmetric eigenproblem      191
Scalapack      61 72
ScaLAPACK ARPACK      385
ScaLAPACK PARPRE      319
Schur canonical form      3 140 146—148 152 158 160 163 175 178 180 184 185
Schur canonical form block diagonalization      188
Schur canonical form computing eigenvectors      148
Schur canonical form computing matrix functions      187
Schur canonical form for real matrices      147 163 184 213
Schur canonical form generalized for real regular pencils      179 185
Schur canonical form generalized for regular pencils      178 180 185
Schur canonical form generalized for singular pencils      180 185
Schur canonical form solving Sylvester or Lyapunov equations      188
Schur complement      91 351
Secular equation      219
SGI symmetric multiprocessor      62 82 84
Shifting      155
Shifting convergence failure      173
Shifting exceptional shift      173
Shifting Francis shift      172
Shifting in double shift Hessenberg QR iteration      163 170 172
Shifting in QR iteration      161 172
Shifting in single shift Hessenberg QR iteration      168
Shifting in tridiagonal QR iteration      213
Shifting Rayleigh quotient shift      215
Shifting Wilkinson shift      213
Shifting zero shift      242
Similarity transformation      141
Similarity transformation best conditioned      153 187
Simultaneous iteration      see “orthogonal iteration”
Singular value      109
Singular value algorithms      237—254
Singular value decomposition      see “SVD”
Singular vector      109
Singular vector algorithms      237—254
SOR      see “successive overrelaxation”
Sparse matrices direct methods for Ax=b      79—83
Sparse matrices iterative methods for $Ax={\lambda}x$      363—389
Sparse matrices iterative methods for Ax=b      265—361
Spectral projection      189
Splitting      279
SSOR      see “symmetric successive over-relaxation”
Stiffness matrix      143 179 255
Strassen's method      68
Strong connectivity      289
Subspace iteration      see “orthogonal iteration”
Substitution (forward or backward)      3 38 44 48 86 177 188
Substitution error analysis      26
Successive overrelaxation      279 283—294 357
Successive overrelaxation model problem      277
SUN symmetric multiprocessor      62 82
SUN workstations      10 14
SVD      105 109—117 134 136 174 195
SVD algorithms      237—254 260
SVD backward stability      118 119 128
SVD reduction to bidiagonal form      166 240
SVD relative perturbation theory      207—210
SVD underdetermined least squares      136
Sylvester equation AX — XB=C      188 358
Sylvester's inertia theorem      202
Symmetric eigenproblem      195
Symmetric eigenproblem algorithms      210
Symmetric eigenproblem bisection      211 260
Symmetric eigenproblem condition numbers      197 207
Symmetric eigenproblem Courant — Fischer minimax theorem      199 261
Symmetric eigenproblem definite pencil      179
Symmetric eigenproblem divide-and-conquer      13 211 217 260
Symmetric eigenproblem inverse iteration      211
Symmetric eigenproblem Jacobi's method      212 232 260
Symmetric eigenproblem perturbation theory      197
Symmetric eigenproblem Rayleigh quotient      198
Symmetric eigenproblem Rayleigh quotient iteration      211 215
Symmetric eigenproblem relative perturbation theory      207
Symmetric eigenproblem Sylvester's inertia theorem      202
Symmetric eigenproblem tridiagonal QR iteration      211 212
Symmetric positive definite matrices      74—76
Symmetric successive overrelaxation      279 294—300
Symmetric successive overrelaxation model problem      277
SYMMLQ      320
Templates for Ax=b      266 279 301
Toda flow      256 260
Toda lattice      255
Toeplitz matrices      85
TRANSPOSE      1
Tridiagonal form      119 166 179 232 236 237 244 247 256 308 330
Tridiagonal form bisection      228—232
Tridiagonal form block      293 359
Tridiagonal form divide-and-conquer      217
Tridiagonal form in block cyclic reduction      330 331
Tridiagonal form in boundary value problems      78
Tridiagonal form inverse iteration      228—232
Tridiagonal form nonsymmetric      321
Tridiagonal form QR iteration      211 212
Tridiagonal form reduction      163 166 197 213 236 253
Tridiagonal form reduction using Lanczos      303 304 320 321 366 389
Tridiagonal form relation to bidiagonal form      240
Unitary matrices      22
Vandermonde matrices      83
Vec($\cdot$)      274
Weierstrass canonical form      173 175 176 178 180 181 185 187
Weierstrass canonical form solving differential equations      176
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте