|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Garey M.R., Johnson D.S. — Computers and intractability. A guide to the theory of NP-completeness |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Graph, bridge connected 210.
Graph, chordal 191 194—195 201 217 285—286.
Graph, circle 191 194—195.
Graph, circular arc 191 194—195.
Graph, claw-free 195.
Graph, comparability 191 194—195 197 285.
Graph, complement 54 191 285.
Graph, complete See cliques
Graph, complete bipartite 194.
Graph, cubic 194 198—199 285—286.
Graph, degree-bounded 84—86 190—192 194- 199—200 203—204 210 212.
Graph, edge 193—195 197—199 285.
Graph, edge directed 192 199.
Graph, Eulerian 131.
Graph, Hamiltonian 75 193 199.
Graph, intersection 191 199 204 219 285.
Graph, interval 198 295.
Graph, k-connected 198.
Graph, line See edge graph
Graph, mixed 212.
Graph, outerplanar 195 197.
Graph, path 199 285.
Graph, planar 86—90 190—192 194—197 199 204 210 212 217 285.
Graph, reducible 192.
Graph, threshold 205.
Graph, total 195.
Graph, transitively orientable See comparability
Graph, uniconnected 197.
Greatest common divisor 250.
Group isomorphism 285.
Grundy numbering 76
Guessing stage (of a nondeterministic algorithm) 28.
Hackenbush 257.
Hamiltonian circuit 35—36 47 56—60 72 85 154—155 167 199.
HAMILTONIAN COMPLETION 198.
Hamiltonian graphs 75 193 199.
HAMILTONIAN PATH BETWEEN TWO VERTICES 60 200.
Hamiltonian paths 60 199—200.
HC See HAMILTONIAN CIRCUIT.
hemisphere 246.
Hereditary property 195.
Heuristic algorithm 122.
HEX 173 254.
Histories (of databases) 234.
Hitting sets 64 222 255.
Hitting string 229.
Homomorphisms of grammars 268.
Homomorphisms of graphs 202—203.
HYPERGRAPH 2-COLORABILITY 221.
Ianov schemes 276—277.
Incompletely specified automata 266—267.
Incongruences 249.
Independent set 53—54 133—134 139 146—147 149 181 194.
Independent set of a graph 53 190—191 195.
Induced subgraph 195—197.
Inequivalence (of languages) 265 267—269.
Inequivalence (of programs and schemes) 275—277.
Inferred finite stale automaton 267.
Inferred regular expression 268.
Infiniteness (of a language) 265 270.
Information retrieval 226—235.
Input length 6 20—23.
Instance of a problem 4 18.
Instant Insanity 173 258.
Instantiation 264.
Instructions, different length 273—274
INTEGER DIVISIBILITY BY FOUR 26.
INTEGER EXPRESSION INEQUIVALENCE 166 253.
Integer programming 245.
Integration 252.
Intersection (of languages) 266—270.
Intersection graphs 191 199 204 219 285.
Intersection patterns 222.
Interval graph, completion 198.
Interval graph, restriction to 285.
Intractable problem 8—12 174 181—186.
Intree partial orders 79.
Intree partial orders, restriction to 239—240.
Isomorphism problems 193 202 207 233 285.
Isomorphism, polynomial time 160—161.
Job shop scheduling 242.
K-closure of a graph 204.
K-connected graphs 198.
Karp, R.M. 14 47 118—119.
Kayles 254.
Kernel of a graph 204.
Key (in a relational database) 232—233.
Knapsack problem 9 65 96 134—139 149 247.
Knuth, D.E. 119—120.
Kth LARGEST SUBSET 114—115 225.
Languages 19—20.
Languages, context sensitive 176 271.
Languages, context-free 268—270.
Languages, developmental 270—271.
Languages, formal 265—271.
Languages, inequivalence of 265 267—269.
Languages, infiniteness of 265—270.
Languages, intersection of 266 270.
Languages, membership in 270—271.
Languages, non-emptiness of 265—270.
Languages, NP-complete 3—4 13—14 37—38 118—119.
Languages, polynomially equivalent 37.
Languages, quasi-realtime 266—270.
Languages, recognition of 24—25 31.
Languages, regular 269.
Languages, universality of 267 269.
Latin squares 285.
Least common multiple 250.
length function 20 92—95.
Levin, L.A. 119.
Line graphs See edge graphs
Linear arrangement, directed optimal 200.
Linear arrangement, minimum cut 201.
Linear arrangement, optimal 200.
Linear bounded automata 175—177 265.
LINEAR BOUNDED AUTOMATON ACCEPTANCE 265.
Linear codes 280.
Linear complementarity 288.
LINEAR DIVISIBILITY 159.
Linear equations 246.
Linear grammar 268—269.
Linear inequalities 245—246.
Linear programming 9 180 215—216
LINEAR SPACE ACCEPTANCE 175 265.
Literal 38.
Liveness (of Petri nets) 279.
Local replacement (proof by) 66—72.
Log-space complete foi P 179—180.
Log-space hard for P 180.
Log-space transformation 178—180.
Logarithmic space 177—181.
Logic circuits 283.
Logic problems 259—264
Longest circuit 213.
Longest common subsequence 228.
Longest common substring 228.
Longest path 75 213.
Loop programs 275—276.
Loop-free program schemes 278.
Lower bounds on complexity 181—182.
lp See linear programming.
LR(K) grammars 268—269.
Many-one reducibility 113.
Matching in a graph 132 134 169 190 192.
Matching problems 192 202—203 221 224 256.
Matching techniques, use of 132 134 190 192—193 196 203 239.
Matching, 2-dimensional 78 221
Matching, 3-dimensional 46 50—53 221 224.
Matching, maximal 192.
Matching, maximum 192 202 256.
| Matching, maximum subgraph 202.
Matching, minimum maximal 192.
Matching, minimum weight 132.
Matching, multiple choice 203.
Matching, numerical 224.
Matching, perfect 194.
Matching, set 221.
Mathematical programming 245—248.
Matrices 200—201 229—230
Matrix, augmentation 229.
Matrix, basis 246.
Matrix, covering 282.
Matrix, domination 281.
Matrix, partitioning 229.
Matrix, permanent of 169 252.
Matrix, sparse 229.
Matrix, totally unimodular 288.
Matroid intersection problem 208.
Matroid parity problem 287.
MAX CUT 210.
max function 92—95.
Maximal matchings 192.
Maximization problems 123.
Maximum 2-satisfiability 259.
MAXIMUM CLIQUE SIZE 164—165.
Maximum Cut 87.
Maximum likelihood ranking 281.
Maximum matchings 192
Maximum SATISFIABILITY 259—260.
Maximum weight branching 208.
Membership (in a language) 270—271
Metric dimension of a graph 204.
Metric, discrete Euclidean 207 209
Metric, Euclidean 209 212
Metric, rectilinear 209 219.
Microcode bit optimization 274.
Minimization problems 123.
MINIMUM CARDINALITY KEY 232.
Minimum cover 64 222.
Minimum cut 210.
Minimum cut linear arrangement 201.
Minimum disjunctive normal form 261.
Minimum equivalent digraph 65 79 198.
MINIMUM EQUIVALENT EXPRESSION 161—162 164.
MINIMUM EQUIVALENT EXPRESSION SIZE 164—165
MINIMUM MAXIMAL MATCHIN 192
Minimum spanning trees 130—131 206—209
Minimum sum of squares 75 225
MINIMUM TARDINESS SEQUENCE 73—74 236.
MINIMUM TEST COLLECTION 71—72 222.
Minimum weight matching 132.
Mixed graphs 212.
Modal logic 262.
Monadic recursion schemes 277.
MONOTONE 3SAT 259.
Morphisms 202—203.
Multi-commodity network flow 216—217.
Multicenter of a graph 219—220.
Multicoloring of a graph 144.
Multiple choice branchings 208.
Multiple choice knapsack problem 247.
Multiple choice matchings 203.
Multiple choice spanning trees 208.
Multiprocessor scheduling problems 65 106
NDTM See nondeterministic Turing machine.
Nearest Neighbor algorithm 129—130.
Neseiril — Roedl dimension 203.
Network flow techniques, use of 210 215
Network flow with bundles 216.
Network flow with homologous arcs 215.
Network flow with lower bounds 216.
Network flow with multipliers 215.
Network flow, integral 215—217.
Network flow, minimum edge-cost 214.
Network flow, multi-commodity 216—217.
Network flow, path constrained 215.
Network flow, two-commodity 216—217.
Network reliability 211.
Network survivability 211.
NEXPTIME 183—184.
NLOGSPACE 180—181.
No wail flow shop 241—242.
Node cover See VERTEX COVER
Non-emptiness (of a language) 265 270.
Nondeterministic algorithm 28—30.
Nondeterministic oracle Turing machine 161.
Nondeterministic Turing machine 12—13 30—31.
Normal form 78.
Normal form, Boyce — Codd 233.
Normal form, minimum disjunctive 261.
NOT-ALL-EQUAL 3SAT 259.
NP 13 27—34 181—186.
NP-compleie problem (or language) 3—4 13—14 37—38 118—119.
NP-complete in the strong sense 95—107 115
NP-easy 117
NP-equivalent 117—118 120.
NP-hard problem 109 113—117 163.
NP1 154—161
NPC 154 160—161.
NPSPACE 175—176.
NUMBER 90—95.
Number problems 94—95.
Number, achromatic 191.
Number, chromatic 191.
Number, composite 155—158 288.
Number, crossing 286.
Number, domatic 190.
Number, Grundy 76 203—204.
Number, prime 155—158
Number, threshold 205.
Number-theoretic problems 249 253.
Numerical matching 224.
Numerical partitioning problems 223—225.
ONE-IN-THREE 3SAT 259.
Open shop scheduling 241.
OPTIMAL LINEAR ARRANGEMENT 200.
Optimization problem 19 114 117 123 164—165.
Oracle luring machine 1 1 1—113
OTM See oracle Turing machine
Outerplanar graphs 195 197.
Outtree partial orders 79.
Outtree partial orders, restriction to 239—240.
P 27 181—186.
p-center 219—220.
P-complete 119.
P-hard 119.
p-median 220.
P-reducibility 118.
Packing problems 124—127 221.
Parallel assignment instruction 273.
PARAMETER 4.
Parametric linear programming 245.
Parity problems 287.
Parsimonious transformation 169.
Partial orders 236—240
Partial orders, chain 236.
Partial orders, dimension of 287.
Partial orders, forest 239.
Partial orders, intree 79
Partial orders, outtree 79 239—240.
Partial orders, series-parallel 237.
Partition 47 90—95 223.
PARTITION INTO CLIQUES 193.
PARTITION INTO PATHS OF LENGTH TWO 76 193.
PARTITION INTO TRIANGLES 68—69 192—193.
Partitioning problems 191—194 209—210 221 223—225.
Partitioning, graph 191—194
Partitioning, matrix 229.
Partitioning, numerical 223—225.
Partitioning, set 221
|
|
|
Ðåêëàìà |
|
|
|