Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
O'Donnell C.J. — Incidence Algebras
O'Donnell C.J. — Incidence Algebras



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Incidence Algebras

Автор: O'Donnell C.J.

Аннотация:

While the incidence algebra of a locally finite partially ordered set X over a commutative ring /?, denoted 1{Х, Л), was introduced in the mid 1960's as a natural setting for the study of some combinatorial problems, it soon became apparent, that this algebra was an interesting object to study. In particular, it includes such standard ring theory examples as the product of copies of a ring R and the ring of upper triangular matrices over Л. The papers by Farkas Doubilet, Rota, and Stanlev and Leroux and Sarraille each investigated some algebraic aspects of incidence algebras and each also expressed the hope that their work would stimulate the interest of other researchers. In this direction, many properties of incidence algebras have been obtained, yet no single source indicative of the current level of knowledge on this subject is available. It is the purpose of the second part of this work (Chapters 4 through 8) to present some of the directions of development that have been explored. The book does not


Язык: en

Рубрика: Математика/

Серия: Сделано в холле

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1997

Количество страниц: 355

Добавлена в каталог: 19.05.2011

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Krull dimension      240 243 244 246 247
Krull dimension, finite      240 241 243 247
Krull dimension, zero      240—244 247—249
Lagrange inversion formula      159—161
Lagrange inversion formula, multivariate      161
Large element      226 227
Lattice      164
Lattice, characteristic      81
Lattice, complete      165
Lattice, direct product      83
Lattice, distributive      3 61 76 77 79 81 126 127 164—166 195 196 204
Lattice, distributive, finite      61 62
Lattice, finite      46 47 49 57 61—66 69 73
Lattice, geometric      73 74 76 86
Lattice, geometric, finite      73 75 76 100
Lattice, geometric, rank      100
Lattice, isomorphism      44 72 204 238
Lattice, of partitions      71 72 86 90 102
Lattice, of subgroups      71 82 83 86 102
Lattice, of submodules      71
Lattice, of vector subspaces      71
Lattice, rank      75 76
Lattice, theory      163 168
Limit point      228
Linear algebra      136 171
Linear transformation      93—95 122—125 150 151 171
Linear transformation, diagonalizable      171 172
Linear transformation, invertible      95
Linear transformation, pairwise commuting      171 172
Linear transformation, scalar      171
Logarithm      88
Lower bound      163 164
Lub      163 164
Matrix      13 16 58—60 62—64 93 101 173 230 299
Matrix, column      60
Matrix, column, operation      60
Matrix, determinant      23 58—60 63 64
Matrix, diagonalizable      62 63 171 172
Matrix, idempotent      172
Matrix, invertible      24 60 63 173
Matrix, lower triangular      13 32
Matrix, nonsingular      93 172
Matrix, representation      171
Matrix, row      93
Matrix, subalgebra      13 32 171 172 299
Matrix, upper triangular      13 23 31 230
Matrix, upper triangular, strictly      230
Meet      65 163 164
Meet of coatoms      47
Meet, semilattice      54—56
Meet, semilattice, finite      57 59
Module, basis      53 60 302
Module, cyclic      69 94—96 98
Module, dimension      99 100
Module, direct sum of      94 100
Module, distributive      281
Module, exponent      69
Module, faithful      281
Module, finite      69 70 86 94
Module, free      52—56 58 60 61 302
Module, free, finite rank      59
Module, independent generators      96 97
Module, isomorphism      57 58 96 97 99 100
Module, submodule      69—71 70 95 99 100 252 253 255 256 258
Module, submodule, cyclic      99
Module, submodule, minimal      69 70
Module, torsion      68 97 98
Module, torsion, finite      68 71 93
Module, torsion, finitely generated      90 97
Module, type      94
Moebius, algebra      53—59 76 86
Moebius, algebra, basis      58 59 61—65 80
Moebius, algebra, isomorphism      58
Moebius, category      18
Moebius, function      12 29 33 35—45 47 51 55 58 59 65 66 08 69 71 72 81 82 84 86 91 96 101 120
Moebius, inversion      33—36 42 43 50 52 53 55 57 61 80 87 88 90 91 95 100 104
Monomial      145 297—299 301
Monomial, degree      297
Morphism      137—140
Multiplicative autoinorphisni      274 275 277 278
Multiplicative map      79 80
Multiplicatively closed set      234 283 241 246
Nest algebra      18
Normal series      82
Number theory      10 29 33 44
Omega ideal      209 211 212 232 233 238 239
Omega ideal, maximal      212—215 248
Omega ideal, prime      211 213 231 240 248—250
Omega ideal, prime, mitiimal      231 238—240
Open set      195 197
Orbit      102
Order complex      51
Order ideal      126 127
Ordinal number      181 183 184 228 229
Ordinal number, limit      181 183 184 228
Ore condition      284—287 292 295 296
p-socle      95 96
Partially ordered set      1
Partially ordered set, anti isomorphism      38 39 44 45
Partially ordered set, Automorphism      273 277—279
Partially ordered set, bounded      5 121 177 179 183—187 199 200 220 222 231 233 236—240 247 248 299 301 302 304
Partially ordered set, complement      63 64 83 84
Partially ordered set, connected      3 9 30 31 164 259 262 271 273
Partially ordered set, countable      14 16 17 224 265 270
Partially ordered set, direct product      39—44 69 117 120
Partially ordered set, doubly infinite      288—290 292 295 296
Partially ordered set, embedding      16 17 149 224 288 289
Partially ordered set, family of      141 148 161
Partially ordered set, finite      14 24 25 35 37 38 40 51 58 171 172 214 229 231 247 248 265 268 279 280 299—301 305 306
Partially ordered set, hereditary      144 146 149 151 153 157
Partially ordered set, ideal of a      34
Partially ordered set, ideal of a principal      34
Partially ordered set, infinite      23 213 223 231 236 247 248 281
Partially ordered set, interval      4
Partially ordered set, interval, length      5 11—13 113—116 293 294
Partially ordered set, irreducible element of      77—79 81
Partially ordered set, isomorphism      5 7—9 20 22 25 38 39 42 43 66 67 69 71 85 111 119 127 130 136 143—145 113 149 153 245 260 261 264 265 268 270—272 288
Partially ordered set, isomorphism, partial      264 265 269
Partially ordered set, isomorphism, potential      264 265 268 270 272 281
Partially ordered set, lower finite      18 173 281
Partially ordered set, maximal element      2 14 54 109 201 288 289 291 294
Partially ordered set, maximum clement      2 79 164
Partially ordered set, minimal element      2 6 199 204 220 221 225 227 287—289 293 295
Partially ordered set, minimum element      2 44 47 53 59 90 148
Partially ordered set, opposite      2
Partially ordered set, segment      4
Partially ordered set, subposet      2 3 5 7 14 19 31 32 45 49 54 77 79 81 102 107 100 120 164 245 264 287 288
Partially ordered set, subposet of periods      102
Partially ordered set, unbounded      5—7 31 117 120 178 183 187 220 221 224 233 240 245 248 300
Partition      6—9 20 21 71 72 90 92 102 103 107 132 134 144 145 148 159 213 244 271
Permutation      64 100 119 148 301 301
Permutation, similar      301—304
PID      68 69 71 86 93 96 97 99
Polya — de Bniijn Theorem      101 103 101
Polya's theorem      101 102 105
Polynomial      23 24 88—90 93 297—301
Polynomial identity      297—302 304 305
Polynomial identity, homogeneous      297 299
Polynomial sequence      133 134 140
Polynomial sequence, binomial type      133 134 140
Polynomial sequence, binomial type, multivariate      141
Polynomial sequence, Boolean type      134
Polynomial sequence, exponential      134
Polynomial sequence, multivariate      134 141
Polynomial, characteristic      23
Polynomial, chromatic      134
Polynomial, cyclotomic      88
Polynomial, degree      87 89 94 134 297—302
Polynomial, exponential Bell      159
Polynomial, homogeneous      297 301
Polynomial, homogeneous, linear      302
Polynomial, irreducible      87 94 100
Polynomial, minimal      87 93
Polynomial, monic      87 88
Polynomial, relatively prime      89
Polynomial, separable      87
Polynomial, standard      299 301 302
Power series      27 113 114 116 117 120 121 135 147 157 159 161
Power series, Eulerian      116 121 137
Power series, exponential      133
Pre-ordered set      1 4 9 18 173 240
Primitive root of unity      88
probability      93
Projection map      99 129 209
Projective space      161
Q-ideal      168
Q-radical      168
Radical      187
Radical, Brown — McCoy      171
Radical, Jacobson      168—170 193 200 202 272
Radical, lower nil      181—185
Radical, nil      173 174 176 179 184 185 222 230 231 238 239
Radical, prime      181 305
Radical, property      168
Radical, upper nil      181 184 185
Ramsey's theorem      5
Rank function      74 75
Reflexivity      1
Riemann zeta function      29
Ring, Artinian      305 306
Ring, automorphism      262 263 273 274 277 279—281
Ring, direct sum      57 280
Ring, embedding      19 285
Ring, finite      272
Ring, indecomposable      203 271 277
Ring, isomorphism      13 15 18 40 61 02 271 285
Ring, local      213 215
Ring, nil      180
Ring, nilpotent      180 184
Ring, nilpotent, element      176 177 180 181 184
Ring, Noetherian      272 305
Ring, of polynomials      53 133 146 157 207
Ring, of quotients      283—287 290 292
Ring, of quotients, isomorphism      284
Ring, of quotients, unit      12 13 23 36 59 289 201 295
Ring, prime      305
Ring, quotient      76
Ring, regular      241—243
Ring, regular, element      243 283—296 305
Ring, semi perfect      306
Ring, semilocal      213—215 248 249
Ring, semiprimary      305
Ring, semiprime      305
Ring, semisimple      305 306
Ring, subring      13 15 16 18 37 180 187 280 285
Ring, subring, nil      180
Ring, subring, nilpotent      180
Ring, theory      176 179 296 297 305
Ring, tic-tac-toe      18
Ring, unit      170 213 241—243 249 273 275 288 289 293 303
Ring, valuation      76 77 86
S-equivalcnce relation      20 32
Schur product      25 252
Scries-parallel networks      161
Semigroup      56 61 117 131 142 143 147 154 155 157 159
Semigroup, anti-isomorphism      159
Semigroup, direct sum      117
Semigroup, embedding      154 155
Semigroup, isomorphism      61 151 157
Semigroup, of multiplicative fund ions      150 157 159
Semigroup, of types      142 152—155
Semigroup, order compatible      142—144 i5l 152 154 155
Semigroup, subsemigroup      147
Set theory      272
Sheaf      18
Similarity class      93 101
Simpiicial complex      50 51
Simpiicial complex, dimension      50
Slone space      196—198 208 218 219 221 224 225 228—230 234
Special function      244—246 248
Spectrum      194—196 203 204 208 209 211 217 231—233 236 237 239 242 247—249
Spectrum, maximum      196—198 208 211 213 215 218
Spectrum, minimum      217—219 221 224 228 229 236—238
Strongly nilpotcnt      176—179 181 182 185 187 234 236 237
Structural matrix ring      16 18
System of distinct representatives      64 65
T nilpolent      306
topology      10 52 194—196 217 229
Topology, basis      195 196
Topology, discrete      10
Topology, induced      196 208 217
Topology, standard      10 202
Topology, Zariski      195
Totally ordered      2 17
Transitivity      1
TREE      117 120
TYPE      19 107 109—112 114 116 119 129 130 142—146 150—155 158—160
Type, cancelable      154
Type, one point      128 129 152—155 158
UFD      120
Ultrafilter      165—167 189 191 192 196—200 202 206 208—215 217—220 222 230 231 239
Ultrafilter, bounded      199 200
Ultrafilter, principal      202 215 230 231 238
Unimodular matroids      161
Unit map      17
Upper bound      163 164
Valuation      77 78 81
Valuation, extension      77
Vandermonde convolution      131
Variable      53 111 117 121 297—299 301 302 304
Variable, degree of      298
Variable, linear      298
Vector      67 145 148
Vector space      17 44 66—71 93—97 99 115 121 122 124—126 128—130 132 135—138 146 171
Vector space, basis      67 97 99 126 128 135 143 155 171 172 224
Vector space, dimension      66—69 71 93—97 115 116 136 171
Vector space, dimension, finite      115 136 171
Vector space, dimension, quotient      66 67 116
Vector space, dimension, Span      59—61 65 67 93 124 126 128 130 132 135 138 302
Vector space, dimension, subspace      66—68 71 115 122 124 129 136 138 140
Vector, component      148
Vector, linearly independent      53 60 61 60 67 78 99 126 224 302
Waring's formula      101
Zero divisor      240—242 283 287—289
Zero divisor, left      287
Zero divisor, right      287 288 291
Zero set      204
Zeta function      11 15 22—25 27 37 105 118 191
Zorm's Lemma      166 217
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте