Авторизация
Поиск по указателям
Cohn P.M. — Free Rings and Their Relations (London Mathematical Society Monographs)
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Free Rings and Their Relations (London Mathematical Society Monographs)
Автор: Cohn P.M.
Аннотация: In the development of ring theory there are two strands, each with its own problems and methods, and although with many points of contact, they have never merged completely. One of them is the theory of algebras; this was a non-commutative (indeed sometimes even non-associative) theory from the beginning but there were always heavy finiteness restrictions, which are only gradually being relaxed. Thus while there is a fairly substantial theory of Artinian rings, the theory of Noetherian rings is still in its early stages, and although it is being developed vigorously, it is clear that some type of maximum condition is essential for its development.
A second and quite distinct line originated with the study of arithmetic in algebraic number fields. In the hands of (Cummer, Dedekind and E. Noether this led to the abstract notion of a Dedekind ring. Meanwhile, algebraic geometers found the need for affine rings hi the study of algebraic varieties; here Dedekind rings appear again, but as a rather special case (essentially the l-dimensional case). Now in the last few years our way of describing the geometrical notions has changed quite radically, with the result that the correspondence (rings)—>(varieties) has been extended and made precise: There is a contravariant functor from the category of commutative rings to the category of affine schemes, which is an equivalence. The effect of this connexion has been profound in both directions; we are concerned here particularly with the help afforded by the geometrical notions in studying rings...
Язык:
Рубрика: Математика /
Серия: Сделано в холле
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Издание: 2nd edition
Год издания: 1985
Количество страниц: 608
Добавлена в каталог: 15.05.2011
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Linear automorphism 342
Linear differential operator 191 506
Linearization by enlargement 272
Link in a lattice 180
Local homomorphism 388
Local rank 255
Local ring (scalar, matrix) 22
localization 37 81 390
Localization theorems 457ff. 472 484
Locally free module 48
Lower multiplicative set 382
Lower segment 211 333
Magnus'theorem 296
Makar — Limanov — Czerniakiewicz theorem 355 379
Malcev conditions 35 82
Malcev — Neumann construction 528
Malcolmson's criterion 485
Matrix (pre-) ideal 396ff.
Matrix algebraic 220
Matrix basis 1
Matrix local ring 22
Matrix object 463
Matrix reduction functor, 147f. 152
Maximal code 325
Meet 540
Meta (semi-) fir 70 73
Metro-equation 515
Minimal admissible matrix 428
Minimal factorization 248
Mixed free algebra 62
Modular lattice, law 540
Monic matrix over a free algebra 272
Monomial 60
Monomial term 105
Monomorphism 545
Morita equivalence 4 62 78
Multiplicative set 382
Nagata's formula 364
Nagata's theorem 157
Nakayama's lemma 21
Natural isomorphism, transformation 548
Negative module, Neg 236 297
Noetherian ring = ring with (left, right) ACC 15
Non-singular matrix xix
Normal closure 443
Normal form in a free algebra 59
Normalizes 443
Null matrix 3
Nullity 161
Numerator 384
One-sided fir 142 176 536
Opposite category 544
Order 55 60 421
Ordered series ring 527
Ore condition, domain 38
Ore set 35
Outer derivation 40
Outer rank 252
Parallelogram law 541
Partition lemma 67
Persistent property 205 442
Perspective 541
Place permutation 364
Polycyclic module 244
Pontryagin's theorem 297
Pos = category of finite partially ordered sets 211
Positive module, Pos 236 297
Power series D-ring 61
Preadditive category 545
Prefix set, code 324
Presentation 552
Primal ring 252
Primary decomposition 184
Primary element 191
Prime 449
Prime element 154 156
Prime matrix 160 425
Prime matrix ideal 401
Prime module 236
Principal ideal domain, ring, PID 71
Principal valuation ring, PVR 130 173
Product of matrix ideals 400
Projective dimension 551
Projective free ring 17 63
Projective module 10 549
Projective trivial ring 18
Projective, in a lattice 541
Proper factorization 268
Proper matrix relation 161 266
Proper specialization 393
Protorsion module 239
Pseudo-Sylvester domain 263 297 418
Pseudo-valuation 95
Pseudolinear extension 517
Pseudolinear mapping 503
Pullback 545
Pure extension 518
Pure subalgebra 341
Pushout 545
PVR = principal valuation ring 130 173
Quasi-Frobenius ring 304
Quasi-identities 414 419 486
Quasi-variety 419 486
Quaternions 23 93 158 225f. 514
Quotient monoid 154
R-field (universal) 388f.
Radical of a matrix ideal 402
Radical of a matrix ideal, Jacobson 20 171
Radical of a matrix ideal, tertiary 321
Rank formula (modules over semifirs) 68
Rank of a free algebra 60
Rank of a free module 6
Rank of a matrix 245ff. 424 431
Rank of a module 48 251
Rational closure 382
Rational power series 134
Rational section 487
Rationality criterion 526
Reduced admissible matrix 429
Refinement of a factorization 178
Regular xix
Regularly embedded 330
Relation (n-term, trivial) 64 100
Relevant N-value 460
Resolution (injective, projective) 258 551
Retract of a ring 70 221
Right invariant 203 301
Rigid domain, UFD 170 192
Rigid element 41 170
Rigid factorization 190
Rigid monoid 41
Ring of fractions 37
Ringlike matrix object 463
Ringoid 86 545
Root 323 339
Row rank 247
S-ring 263 418
Saturated set, saturation 394 467
SAut, Special automorphism group 357
Schanuel's lemma 24f. 192 552
Schreier refinement theorem 178 542
Schreier — Lewin formula 109 334
Schreierset 333
Schur's lemma 167 222
Section, global (integral, rational) 487
Segment (lower, upper) 211
Semi-Artinian, -Noetherian 195
Semifir 67 85
Semifree module 48
Semihereditary (left, right, weakly) 11 13 63
Semilinear mapping 503
Semiprime matrix ideal 402
Semisimple Artinian ring 193 550
Shear 342
Similar elements, matrices, 25 162 192
Similar right ideals 158
Simple N-value 450
Simple, -simple 167
Singular kernel 391
Singular matrix xix
Singularity support 286 410
Skew formal Laurent series 522f.
Skew Laurent polynomial 54
Skew polynomial ring 52 497ff.
Skew polynomial ring, iterated 532
Skew rational function field 53 521
Source 544
Spacial module 254
Special automorphism 357
Specialization 388
Specialization lemma 285 297
Spectral space 412
Spectrum of a matrix 510
Split exact 549
Squarefree module 196
Stabilize, stab 342
Stable atom 17
Stable GL 449
Stable rank 261
Stably associated 26 63 162
Stably free 15
Stably full 262
Stably honest 418
Standard basis in , 3
Standard form in 115f.
Strictly bordered 426
Strictly cyclic module 192
Strong DFL-property 201 299f.
Strong G-ring, -ring 76
Strong prime ideal 177
Strongly regular 419
Subdirect product 544
Subdirectly irreducible 544
Suffix set 324
Support 59 354 526
Sylvester domain 253 297 417
Sylvester's law of nullity 253 297
Tame automorphism 343
TARGET 544
Tensor D-ring (on a D-bimodule) 61
Tensor product of modules 552
Tertiary radical 321
Test module 192
Three-by-three lemma 547
Top component 344
Topological fir 128
Torsion class, torsion free class 228 296
Torsion element, submodule 46
Torsion free module 46
Torsion module (over semifir) 164 239 297
Total divisor 489
Totally coprime 315 435
Totally inert 84
Totally unbounded 316
Trace form 372
Transcendental matrix 506
Transduction 105
Transfinite degree function 139
Transfinite division algorithm 90
Transfinite weak algorithm 139 152
Translation 342
Transpose of a module, Tr(-) 233 297
Transvection 74
TREE 349
Trivial filtration 95
Trivial operation 405 422 469
Trivial relation 64 475
Trivializable 65 101 475
Truncated filtered ring 111
U(R) = group of units of R xviii
UF-monoid 153f.
UFD = unique factorization domain 153 164 192
UGN (= unbounded generating number) 6 63
Ultraproduct theorem 286
Unbound 228
Unbounded generating number (UGN) 6 63
Unbounded, totally 316
Uncleft, totally 189
Unfactorable matrix 269
Unique factorization domain (UFD) 153 164 192
Unique remainder algorithm 90 532 539
Unitriangular matrix 74
Universal denominators, theorem on 434
Universal field of fractions, R-field 281 389
Universal group of a monoid 35
Universal localization 390
Universal mapping property of free algebras 59
Universal object 548
Universal T-inverting monoid, ring 34 36
Upper multiplicative set 382
Valuation (ring) 302 452 531
Value 445
Vandermonde's identity 360
Weak -basis of a right ideal 98 128
Weak algebra basis 104 129
Weak algorithm (n-term) 96 273
Weak algorithm (n-term) in a graded ring 101f.
Weak algorithm (n-term), inverse 125
Weak algorithm, transfinite 139
Weak global dimension 256ff. 553
Weakly finite ring 6 63
Weakly semihereditary 13
Weight 342f.
Weyl algebra, 55 265
Whitehead group 449
Whitehead lemma 451 453
Width of a graph 351
Wild automorphism 342
X-inner, X-outer automorphism 372
Zero (left, right) of a polynomial 514
Zero delay code 324
Zero object 545
Реклама