Авторизация
Поиск по указателям
Bracewell R.N. — The Fourier Transform and its applications
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: The Fourier Transform and its applications
Автор: Bracewell R.N.
Аннотация: I ransform methods provide a unifying mathematical approach to the study of electrical networks, devices for energy conversion and control, antennas, and other components of electrical systems, as well as to complete linear systems and to many other physical systems and devices, whether electrical or not. These same methods apply equally to the subjects of electrical communication by wire or optical fiber, to wireless radio propagation, and to ionized media—which are all concerned with the interconnection of electrical systems—and to information theory which, among other things, relates to the acquisition, processing, and presentation of data. Other theoretical techniques are used in handling these basic fields of electrical engineering, but transform methods are virtually indispensable in all of them. Fourier analysis as applied to electrical engineering is sufficiently important to have earned a permanent place in the curriculum—indeed much of the mathematical development took place in connection with alternating current theory, signal analysis, and information theory as formulated in connection with electrical communication.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Издание: 3rd edition
Год издания: 2000
Количество страниц: 618
Добавлена в каталог: 10.04.2011
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Filters, fixed-frequency 147
Filters, general 251
Filters, low-pass 66 75
Filters, measuring 167
Filters, reception 468
Filters, rectangular 224—226 227
Filters, smoothing 468
Filters, time-invariant 39
Finite difference 84 180—184 189 206
Finite difference as convolution 33 84—85
Finite Fourier transform 217 242—243
Finite impulse response (FIR) 204
Finite resolution 93
Finite transforms 242—243
First difference theorem 301
First moment 153—156 189
First moment and Mellin transform 344
First moment in two dimensions 333
First moment of waveform 206
Fixed-frequency filters 147
Flanagan, J. L. 493 506
Flannery, B. P. 21 141 149 289 302 304 321 325
Flow diagram 278 311
Flow/pressure 203
Focus 369
Formula interpretation 18—20
FORTRAN 142 149 323
Forward difference 33
Foster, R. M 22 573
Four-terminal network 200
Fourier integral transform pairs 305
Fourier kernels 329 339—340 346—347
Fourier series and convolution theorem 115—119
Fourier series and Gibbs phonomenon 240 250
Fourier series and Hartley transform 293—295 306—307
Fourier series and Laplace transform 22 381
Fourier series and sampling 82 230
Fourier series and Schroedinger's equation 197
Fourier series and shah 82 83 247—248 Discrete
Fourier series as extreme case of transform 237
Fourier series in three dimensions 340—343 375 378
Fourier series in two dimensions 284 329—331 332—335
Fourier series of Abel transform 373
Fourier series of autocorrelation function 122
Fourier series of derivative 124
Fourier series of Gaussian function 58 105
Fourier series of generalized function 127
Fourier series of Hilbert transform 360
Fourier series of null functions 87—88
Fourier series of point response function 416
Fourier series of product 117
Fourier series of sine 2 67—68
Fourier series, applications 370 405
Fourier series, conditions for existence 8—10
Fourier series, convergence 57
Fourier series, definition 5—6
Fourier series, double 91
Fourier series, eigenfunctions 194 196 514
Fourier series, examples 134 369
Fourier series, exercises 374 375 377
Fourier series, finite 217 242—243
Fourier series, half-order 367
Fourier series, notation 7
Fourier series, numerical 140—142
Fourier series, reciprocal properties 18—20 194 266
Fourier series, recovery of original function 326
Fourier series, slow 136 142
Fourier series, software packages 141—142
Fourier series, spectroscopy 148
Fourier series, symmetry properties 15
Fourier series, tables 107 130
Fourier series, theorems 130 332—333
Fourier transform 124 125 126 333
Fourier transform and frequency 435
Fourier transform and heat 480—481
Fourier transform and Laplace transform 385
Fourier transform and noise 463 464—465
Fourier transform and pulse shape 75 77—78
Fourier transform as ordinary function 98
Fourier transform for Fourier transform 124 125 130 145
Fourier transform for Mellin transform 346
Fourier transform of 140 420
Fourier transform of convolution integral 126 127 130
Fourier transform of fractional Fourier transform 369
Fourier transform of Gaussian function 60
Fourier transform of impulse 85 87 126
Fourier transform of segmented function 145
Fourier transform of unit step function 72
Fourier transform of, for Laplace transform 385
Fourier transform of, in two dimensions 333
Fourier transform, half-order 127 351 487
Fourier transform, Laplace transform of 386
Fourier transform, product 128
Fourier transform, table of 508
Fourier transform, transform 98
Fourier transform, transform of 105
Fourier transformin two dimensions 59
Fourier's integral theorem 6 21—22
Fourier, J. B. J. 55 236
Fourpole (see Filters)
Fractional convolution 369
Fractional Fourier transform 367—370 505
Fractional order derivatives 127 351 353
Fraunhofer diffraction 66 420
Frequency analysis 135 305 489
Frequency division 494—495
Frequency response 3 200
Fresnel diffraction 171 420—421
Friedman, B. 93 99
Friis, H. 423
Fringe visibility 416
Functional 3 25
G-stiing 489
G-string 489
Gabor, Dennis 490 499 501 502 505
galvanometers 28
Gardner, W. A. 428 442 447 469
Gaskill, J. D. 422
Gate function 2 57
Gate function, Fourier transform of 105 137
Gate function, Hilbert transform of 365
Gate function, Laplace transform of 388
Gauss, C. F. 141
Gaussian amplitude distribution 463
Gaussian diffusion 480
Gaussian envelope 247
Gaussian function 58 575
Gaussian function and central-limit theorem 186—188
Gaussian function, derivatives 60
Gaussian function, double humped 218 531
Gaussian functions 412
Gaussian tendency 187
Gaussian tendency and sampling 249
Gaussian tendency of sine function 52
Generalized function 4 75
Generalized function, concept 92—94
Generalized function, derivative 97
Generalized function, exercise 103
Geophysics xvii
George, N. 372
Gertner, I. 289
Gibbs phenomenon 81 240—242 250
Gold, B 289
Good, I, J. 275 289
Goodman, J. W. 21 422 422 447 469
Graded refractive index 368 379
Graphical representation of functions 55
Graphical representation of imaginary quantities 68
Graphical representation of impulse symbol 80
Graphics 129 251—252
Gratings 82 147 148
Gravity and convolution theorem 118
Gravity for two-dimensional Fourier transform 333
Gravity for waveforms and spectra 206
Gravity, center of and centroid 155
Gray, R. M 22 428 442 469
Grebenkemper, C. J. 403
Green's function 4 481
Griffiths, J. 422
Grossman, A. 500 506
Group theory 367
Guo, H. 308 325
Gyration, radius of 159 344
Half-order derivative 127 351 487
Half-power, width to 167
Hankel transform 335—339 343 357
Hankel transform in n dimensions 343
Hankel transform, exercise 376
Hao, H. 300 325
Harmonic response 3 39 209
Harmonics 255
Hartley oscillator 296—297
Hartley transform 142 147 293 573
Hartley transform and Fourier transform 144 306—307
Hartley transform in two dimensions 299—300
Hartley transform, and spectral analysis 493
Hartley transform, complex 306—307 327
Hartley transform, convolution theorem 298—300 320
Hartley transform, decomposition formula 310
Hartley transform, discrete (DHT) 293
Hartley transform, factorization 317
Hartley transform, fast (FHT) 308 322
Hartley transform, instrumentation 147
Hartley transform, intensity 337
Hartley transform, matrix formulation 317
Hartley transform, microwave 307
Hartley transform, numerical example 314
Hartley transform, optical 307
Hartley transform, physical aspect 307
Hartley transform, power spectrum 314
Hartley transform, theorems 298 300—301 310 375—376
Hartley, R. V. L. xix 200 211 293 296—297 325
Haus, H. A. 423
Haykin, S. 503 506
Heat conduction, diffusion along a poker 477
Heat conduction, Fourier's theory 475 595
Heat conduction, Green's function 481
Heat conduction, irreversibility 476
Heat conduction, one-dimensional diffusion 475—480
Heat conduction, point concentration 480
Heat conduction, problems 485
Heat conduction, spatial sinusoid diffusion 481—485
Heat conduction, thermal-electric analogy 487
Heaviside step function 61—65 70 265
Heaviside, O. 74 381
Helicoid 113
Helix 362
Helliwell, R. A. 370 372 493 506
Helmholtz, H. von 74
Herivel, J. 596
Hermite polynomial pairs 194 197
Hermite — Gauss functions 194 575
Hermitian 14 191 298
Hermitian spectrum 199
Hermitian, autocorrelation 50 51
Hermitian, characteristic 435—436
Hermitian, exercises 373
Hermitian, transfer 373
Heydt, G. T 222 297 308
Hilbert transform 329
Hilbert transform of noise 465—466
Hilbert transform, analytic signal 361
Hilbert transform, causality 363
Hilbert transform, computing 364—367
Hilbert transform, definition 359
Hilbert transform, envelope 363
Hilbert transform, Fourier transform of 359
Hilbert transform, instantaneous frequency 363 493
Hilbert transform, instantaneous phase 498
Hilbert transform, phasor generalization 361
Hilbert transform, tables 365
Hilbert transform, theorems 372
Hilgevoord, J. 290
Histograms, distribution of sum 429
Histograms, noise amplitude 448
Histograms, Poisson distribution 441
Hobson, E. W. 55
Hou, H. S. 314 325
Humbert, P. 22
Huygens, C. 408
Hydrology 253
Impedance 485
Improper function 74—75 (see also Impulse symbol)
Impulse response and finite resolution 93
Impulse response and null functions 87—88
Impulse response and pulse shape 75 79
Impulse response and unit step function 75—78
Impulse response as generalized function 92 95
Impulse response for fictitious impulse 4
Impulse response in digital filtering 204
Impulse response in electrical networks 74—75
Impulse response in proofs of theorems 128
Impulse response of filter 200—204
Impulse response, causal 519
Impulse response, continuous-time 205
Impulse response, convenience 74
Impulse response, derivatives 85—87 97 126
Impulse response, duplication 84
Impulse response, exercises 216—217
Impulse response, Fourier transform 200—201
Impulse response, Fourier transform of 106
Impulse response, graphical representation 80
Impulse response, Impulse symbol 4 74
Impulse response, Laplace transform 381 390—392
Impulse response, Laplace transform of 388
Impulse response, notation 4 85
Impulse response, pairs 84 154 414
Impulse response, problems 99 517
Impulse response, product 103 431
Impulse response, properties 80—81
Impulse response, rectangular 216
Impulse response, replicating property 83—84
Impulse response, ring impulse 104 338
Impulse response, sampling property 81—83
Impulse response, sifting property 78—81 86
Impulse response, transfer function 390—392
Impulse response, two-dimensional 334 375 377
Impulse response, utility 80 92
Impulse train 365 401
Impulse train, periodic 245—246
IMSL 142 149
Independence 451—454
Index replacement rule 274
Index reversal 291
Inequalities 174—176 206
Inequalities for waveforms and spectra 206
Inequalities to ordinate and slope 174—176
Inequalities, Bessel's 176
Inequalities, limits to autocorrelation 49
Inequalities, Schwarz's 49 176 178 189
Inertia 156—157
Infinite impulse train 2
Infinitesimal dipole 85
Information loss 45 47
Infrared 486
Initial-value problems 392—396
Instantaneous frequency 363 374
Integral as convolution 63
Integral cosine transform examples 301
Integral, Laplace transform of 385
Реклама