Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Farhang-Boroujeny B. — Adaptive filters: theory and applications
Farhang-Boroujeny B. — Adaptive filters: theory and applications



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Adaptive filters: theory and applications

Автор: Farhang-Boroujeny B.

Аннотация:

Adaptive filtering is an advanced and growing field in signal processing. A filter is a transmission network used in electronic circuits for the selective enhancement or reduction of specified components of an input signal. Filtering is achieved by selectively attenuating those components of the input signal which are undesired, relative to those which it is desired to enhance. This comprehensive book is both a valuable student resource and a useful technical reference for signal processing engineers in industry. The author is experienced in teaching graduates and practicing engineers and the text offers good theoretical coverage complemented by plenty of application examples.


Язык: en

Рубрика: Технология/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1999

Количество страниц: 275

Добавлена в каталог: 09.04.2011

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Transform domain LMS algorithm, computational complexity      237
Transform domain LMS algorithm, effect or normalization      213
Transform domain LMS algorithm, filtering view      219—224
Transform domain LMS algorithm, geometrical interpretation of      211—215 217
Transform domain LMS algorithm, guidelines for the selection of the transform      224
Transform domain LMS algorithm, improvement factor      217
Transform domain LMS algorithm, improvement factor, maximum attainable improvement      219
Transform domain LMS algorithm, Karhunen — Loeve transform and      210
Transform domain LMS algorithm, misadjustment of      209
Transform domain LMS algorithm, modes of convergence      209
Transform domain LMS algorithm, Newton's algorithm and      210
Transform domain LMS algorithm, power-normalization and      208—209
Transform domain LMS algorithm, selection of transform      210—224
Transform domain LMS algorithm, step-normalization      208 225
Transform domain LMS algorithm, summary      209
Transform domain LMS algorithm, tracking behaviour      473 480 481 482 485
Transformation matrix      202
Transversal filter      4
Transversal filter based adaptive algorithms, fast block LMS algorithm      see "Fast block LMS algorithm"
Transversal filter based adaptive algorithms, fast recursive least-squares algorithms      see "Fast recursive least-squares algorithms"
Transversal filter based adaptive algorithms, subband adaptive fillers      see "Subband adaptive fillers"
Transversal filter based adaptive algorithms, transform domain LMS algorithm      see "Transform domain LMS algorithm"
Unconstrained Wiener filters      62—81
Unconstrained Wiener filters, inverse modelling      71—75
Unconstrained Wiener filters, modelling      68—70
Unconstrained Wiener filters, noise cancellation      75—81
Unconstrained Wiener filters, optimum transfer function of      66
Unconstrained Wiener filters, performance function of      63—64
Unconstrained Wiener filters, principle of orthogonality      66
Unconstrained Wiener filters, Wiener — Hopf equation      66
Unitary matrix      92 202
Unitary similarity transformation      93
Variable step-size LMS algorithm      175—178 485—489
Variable step-size LMS algorithm, bounds on the step-size parameters      177
Variable step-size LMS algorithm, computer simulations      489—494
Variable step-size LMS algorithm, derivation      466
Variable step-size LMS algorithm, optimal tracking behaviour      463 486 491
Variable step-size LMS algorithm, step-normalization      489
Variable step-size LMS algorithm, step-size parameters, limiting      491
Variable step-size LMS algorithm, step-size update recursions      176 487
Variable step-size LMS algorithm, summary      177
Variable step-size LMS algorithm, variations and extensions      487—489
Variable step-size LMS algorithm, variations and extensions, common step-size parameter, with a      488
Variable step-size LMS algorithm, variations and extensions, complex-valued data, for      488
Variable step-size LMS algorithm, variations and extensions, multiplicative vs. linear increments      487 491
Variable step-size LMS algorithm, variations and extensions, sign update equation      487
Vector space of random variables      58
Viterbi detector      14
Volterra filters      6
Walsh — Hadamard transform (WHT)      225
Walsh — Hadamard transform (WHT), sliding realization of      244
Waveform coders      19—20
Weak excitation      131
Weight-error correlation matrix      147 149 426 474
Weight-error vector      142 426
Weighting functiori/factor      413 419
Wide-sense stationary processes      see "Stochastic processes"
Wiener filters      2 49 see
Wiener filters, adaptive filters development based on theory of      7
Wiener filters, applications      49
Wiener filters, criterion      50
Wiener filters, example of performance function for I1R structure      65
Wiener filters, example of performance surface for FIR structure      56
Wiener filters, extension to complex-valued case      59—62
Wiener filters, minimum mean-square error      54 62
Wiener filters, non-recursive (FIR)      50
Wiener filters, optimum tap weights      54 62
Wiener filters, performance/cost function      50
Wiener filters, principle of correlation cancellation      70
Wiener filters, principle of orthogonality      56—58
Wiener filters, recursive (I1R)      50 324
Wiener filters, relationship with least-squares estimation      413
Wiener filters, summary      81—82
Wiener filters, transversal, real-valued case      51—56
Wiener — Hopf equation, complex-valued case      62
Wiener — Hopf equation, derivation using the principle or orthogonality      58
Wiener — Hopf equation, direct derivation      53
Wiener — Hopf equation, frequency domain interpretation of      67
Wiener — Hopf equation, real-valued case      54
Wiener — Hopf equation, solution using Levinson — Durbin algorithm      357 377—379
Wiener — Hopf equation, transform domain adaptive filters, for      203
Wiener — Hopf equation, unconstrained filters, for      66
Window matrices      256 287
z-transform      29—34
z-transform, examples      29—31
z-transform, inverse      31 33
z-transform, inverse integral      33
z-transform, region of convergence      29
1 2 3 4
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте