Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Farhang-Boroujeny B. — Adaptive filters: theory and applications
Farhang-Boroujeny B. — Adaptive filters: theory and applications



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Adaptive filters: theory and applications

Автор: Farhang-Boroujeny B.

Аннотация:

Adaptive filtering is an advanced and growing field in signal processing. A filter is a transmission network used in electronic circuits for the selective enhancement or reduction of specified components of an input signal. Filtering is achieved by selectively attenuating those components of the input signal which are undesired, relative to those which it is desired to enhance. This comprehensive book is both a valuable student resource and a useful technical reference for signal processing engineers in industry. The author is experienced in teaching graduates and practicing engineers and the text offers good theoretical coverage complemented by plenty of application examples.


Язык: en

Рубрика: Технология/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1999

Количество страниц: 275

Добавлена в каталог: 09.04.2011

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Normalized least-mean-square (NLMS) algorithm, geometrical interpretation of      174
Normalized least-mean-square (NLMS) algorithm, Nitzberg's interpretation of      172—173 194
Normalized least-mean-square (NLMS) algorithm, summary      175
Observation vector      89
Omni-directional antenna      78 166
One-step forward prediction      357
Optimum linear discrete-time fillers      see "Linear prediction" "Wiener
Order of N complexity transforms      see "Fast recursive least-squares algorithms" "Sliding
Order-update equations      357 364 368
Orthogonal coefficient vectors      219
Orthogonal complementary projection operator      419
Orthogonal transforms      202
Orthogonal transforms, band-partitioning property of      204—205 224
Orthogonal transforms, orthogonalization properly of      205—208
Orthogonal, random variables      57
Orthogonality of backward prediction errors      363 445
Orthogonality principle      see "Principle of orthogonality"
Orthonormal matrix      479
Overlap-add method      254
Overlap-save method      254
Overlap-save method, matrix formulation of      256—257
Oversampling      345
Parallel processing      247
Parallel processor      748
Parametric modelling of random processes autoregressive (AR)      15 387 see
Parametric modelling of random processes autoregressive (AR), autoregressive moving average (ARMA)      15
Parametric modelling of random processes autoregressive (AR), moving average (MA)      15
Parametric spectral analysis      17 387
Parseval's relation      34 97 220
Partial correlation (PARCOR) coefficients      367 445
Partial response signalling      13
Partitioned fast block LMS (PFBLMS), algorithm      265—278
Partitioned fast block LMS (PFBLMS), analysis      268—270
Partitioned fast block LMS (PFBLMS), block diagrams      267 271
Partitioned fast block LMS (PFBLMS), computational complexity      273—274
Partitioned fast block LMS (PFBLMS), computational complexity, example      274
Partitioned fast block LMS (PFBLMS), computer simulations      275—278
Partitioned fast block LMS (PFBLMS), constrained on rotational basis      275
Partitioned fast block LMS (PFBLMS), constrained versus unconstrained      269 270
Partitioned fast block LMS (PFBLMS), frequency bin filters      268
Partitioned fast block LMS (PFBLMS), learning curves      277 278
Partitioned fast block LMS (PFBLMS), misadjustment equations      273
Partitioned fast block LMS (PFBLMS), modified constrained PFBLMS algorithm      275
Partitioned fast block LMS (PFBLMS), overlapping of partitions      269
Partitioned fast block LMS (PFBLMS), summary      272
Performance function, based on deterministic framework      2
Performance function, based on statistical framework      2
Performance function, canonical form      106
Performance function, normalized form      59
Performance function, unconstrained Wiener filter, of      63—64
Performance indices      215
Performance surface, contour plots      105
Performance surface, defined      89
Performance surface, eccentricity      108 110 211 213
Performance surface, eigenvalue spread effect      108
Performance surface, examples      56 109
Performance surface, extension to complex-valued case      112—113
Performance surface, hyperparabola shape      107
Performance surface, transversal Wiener filters, of      104—113
Phase shift keying (PSK)      9 59
Positive definite correlation matrix      90
Power inversion formula      78
Power inversion formula, example of      78—81
Power line interference cancellation      18
Power normalization      201 206
Power spectral density      40—42
Power spectral density, defined      40
Power spectral density, estimation      17 387
Power spectral density, interpretation      42 44
Power spectral density, properties      42
Power spectral density, relationship with autocorrelation coefficients      41 377
Power spectral density, relationship with linear predictor coefficients      377
Power spectral density, transmission of a stationary process through a linear filter      44
Power spectrum      see "Power spectral density"
Prediction applications      17—20
Prediction errors, properties of      362—364
Prediction-error filters      361—362 see
Prewindowing of input data      446
Primary input      21 76
Principle of correlation cancellation      70
Principle of orthogonality, complex-valued signals, for the case of      61
Principle of orthogonality, corollary to      57
Principle of orthogonality, least-squares estimation, in      416—417
Principle of orthogonality, linear predictors, in      363
Principle of orthogonality, unconstrained Wiener fillers, in      66
Principle of orthogonality, Wiener filters, in      56—57
Processing delay (latency)      265 274 302 305 306 319
Projection operator      418—419
Prototype filler      294 311
Pulse-code modulation, adaptive differential      20
Pulse-spreading effect      12 see
QR-decomposition-based recursive least-squares (QRD-RLS)      8
QRD-RLS algorithm      8
Quadrature-amplitude modulation (QAM)      9 59 178
Quasi LMS-Newton algorithm      210
Raised cosine pulse      490
Random process      see "Stochastic processes"
Random variables, inner product      58
Random variables, orthogonality      57
Random variables, projection      58
Random variables, subspaces      58
Random walk      491
Random walk, approximate realization of      491
Real DFT      224
Real DFT, non-recursive sliding realization of      233
Receiver noise      12
Recursive algorithms      see "Names of specific algorithms"
Recursive least-squares (RLS) algorithms      see also "Least-squares lattice"
Recursive least-squares (RLS) algorithms, a priori and a posteriori estimation errors      446
Recursive least-squares (RLS) algorithms, augmented normal equations      448
Recursive least-squares (RLS) algorithms, classification      8
Recursive least-squares (RLS) algorithms, computational complexity      461
Recursive least-squares (RLS) algorithms, conversion factor      447 450—452
Recursive least-squares (RLS) algorithms, conversion factor, update recursion      453
Recursive least-squares (RLS) algorithms, cross-correlations      447 453—456
Recursive least-squares (RLS) algorithms, cross-correlations, update recursions      456
Recursive least-squares (RLS) algorithms, least-squares error sums      447
Recursive least-squares (RLS) algorithms, least-squares error sums, update recursions      450
Recursive least-squares (RLS) algorithms, notations and preliminaries      446—449
Recursive least-squares (RLS) algorithms, numerical stability      439 458
Recursive least-squares (RLS) algorithms, prewindowing of input data      446
Recursive least-squares (RLS) algorithms, QR-decomposition RLS      8 see
Recursive least-squares (RLS) algorithms, Recursive least-squares estimation      see "Recursive least-squares algorithms" "Recursive "Fast
Recursive least-squares (RLS) algorithms, Recursive least-squares lattice (RLSL) algorithms      8 439 446—460
Recursive least-squares (RLS) algorithms, RLSL algorithm using a posteriori errors      456—458
Recursive least-squares (RLS) algorithms, RLSL algorithm using a posteriori errors, summary      457
Recursive least-squares (RLS) algorithms, RLSL algorithm with error feedback      458—460
Recursive least-squares (RLS) algorithms, RLSL algorithm with error feedback, summary      459
Reference input      21 76
Region of convergence      29
Region of convergence, stable systems, of      35
Regressor tap-weight vector      425
Repeated eigenvalues      90
Rescue variable      465 466
Residue theorem      33
RLS algorithm      see "Standard recursive least-squares algorithms"
Roll off factor      311
Rotation of the coordinate axes      213
Rotation of the performance surface      213
Round-off error      229 236 425 460
Self-tuning regulator (STR)      10
Sign algorithm      169
Sign-sign algorithm      169
Signal-to-noise power spectral density ratio      69
Signed-regressor algorithm      169
Simplified LMS algorithms      169—172
Simplified LMS algorithms, computer simulations      170
Simplified LMS algorithms, convergence behaviour      171 193—194
Simplified LMS algorithms, sign algorithm      169
Simplified LMS algorithms, sign-sign algorithm      169
Simplified LMS algorithms, signed-regressor algorithm      169
Sine wave plus noise, correlation matrix      101
Sinusoidal interference cancellation      18 335
Sliding transforms      225—237
Sliding transforms, Braun's algorithm as a sliding DFT      230—233
Sliding transforms, complexity comparisons      237
Sliding transforms, frequency sampling filters      226—227
Sliding transforms, frequency sampling filters, common properly of      230
Sliding transforms, frequency sampling filters, transfer functions of      227
Sliding transforms, recursive realization of      227—230
Sliding transforms, recursive realization of, stabilization      230
Sliding transforms, recursive realization of, stabilizing factor      236
Sliding transforms, round-off error      229 236
Sliding transforms, stability      229
Software implementation      235 320 388
Source coders      see "Speech coding"
Spectral estimation      15
Spectral estimation, parametric and non-parametric      17
Spectrum      see "Power spectral density"
Spectrum analysis      17 387
Speech coding/processing      18—20 357
Speech coding/processing, adaptive DPCM (ADPCM)      20
Speech coding/processing, ADPCM encoder-decoder      20
Speech coding/processing, differential PCM (DPCM)      20
Speech coding/processing, ITU recommendation G      726 20
Speech coding/processing, linear prediction and      357
Speech coding/processing, linear predictive coding      19
Speech coding/processing, pilch period      19
Speech coding/processing, pulse code modulation (PCM)      19
Speech coding/processing, voiced and unvoiced sounds      19
Speech coding/processing, waveform coding      19—20
Square-root of a matrix      113
Stability      see "Names of specific algorithms"
Standard recursive least-squares (RLS) algorithms      8 419—425 see
Standard recursive least-squares (RLS) algorithms, a posteriori and a priori estimation errors      422 432
Standard recursive least-squares (RLS) algorithms, average tap-weight behaviour      425—426
Standard recursive least-squares (RLS) algorithms, comparison with the LMS algorithm      452
Standard recursive least-squares (RLS) algorithms, computational complexity and alternate implementation of      424
Standard recursive least-squares (RLS) algorithms, computer simulations      432—433
Standard recursive least-squares (RLS) algorithms, convergence behaviour      425—434
Standard recursive least-squares (RLS) algorithms, derivation of RLS recursions      419—422
Standard recursive least-squares (RLS) algorithms, effect of initialization on the steady state performance of      422
Standard recursive least-squares (RLS) algorithms, eigenvalue spread and      430 432
Standard recursive least-squares (RLS) algorithms, excess mean-square error      430
Standard recursive least-squares (RLS) algorithms, fine-tuning process      431
Standard recursive least-squares (RLS) algorithms, forgetting factor      419
Standard recursive least-squares (RLS) algorithms, forgetting factor, measure of memory, as a      420
Standard recursive least-squares (RLS) algorithms, gain vector      421 422
Standard recursive least-squares (RLS) algorithms, independence assumption      428
Standard recursive least-squares (RLS) algorithms, initialization of      422—423
Standard recursive least-squares (RLS) algorithms, learning curve      427—430
Standard recursive least-squares (RLS) algorithms, LMS-Newton algorithm and      430 494
Standard recursive least-squares (RLS) algorithms, misadjustment      430
Standard recursive least-squares (RLS) algorithms, one iteration of      422
Standard recursive least-squares (RLS) algorithms, rank deficiency problem in      432
Standard recursive least-squares (RLS) algorithms, round-off error accumulation in      424
Standard recursive least-squares (RLS) algorithms, stable implementation of      424
Standard recursive least-squares (RLS) algorithms, summary      423
Standard recursive least-squares (RLS) algorithms, tap-weight misalignment      435
Standard recursive least-squares (RLS) algorithms, time constant      429
Standard recursive least-squares (RLS) algorithms, tracking behaviour      420 473 479 481 482
Standard recursive least-squares (RLS) algorithms, transient behaviour of      431—434
Standard recursive least-squares (RLS) algorithms, variable forgetting factor, with      494—496
Standard recursive least-squares (RLS) algorithms, variable forgetting factor, with, summary      495
Standard recursive least-squares (RLS) algorithms, weight-error correlation matrix      426—427
Standard recursive least-squares (RLS) algorithms, weighting factor      419
Stationary processes      see "Stochastic processes"
Steepest descent, method of      120—131
Steepest descent, method of, bounds on the step-size parameter      123
Steepest descent, method of, effect of eigenvalue spread      130—131
Steepest descent, method of, geometrical ratio factors      130
Steepest descent, method of, learning curve      127—130
Steepest descent, method of, learning curve, numerical example      128—130
Steepest descent, method of, modes or convergence      123 125 128
Steepest descent, method of, optimum value of step-size parameter      131
Steepest descent, method of, overdamped and underdamped      123 124
Steepest descent, method of, power spectral density effect      131
Steepest descent, method of, search steps      121
Steepest descent, method of, stability      123
Steepest descent, method of, step-size parameter      122
Steepest descent, method of, time constants      128
Steepest descent, method of, trajectories      127
Steepest descent, method of, transient behaviour of mean-square error      125
Steepest descent, method of, transient behaviour of tap-weight vector      125
Steepest descent, method of, transient behaviour of tap-weight vector, numerical example      125—127
Step-normalization      208 225 261
Stochastic gradient vector      141 263 326 487
Stochastic gradient-based algorithms      see "Least-mean-square algorithm"
Stochastic processes      36—46
Stochastic processes, ensemble averages      37
Stochastic processes, ergodicity      46
Stochastic processes, jointly stationary      38
Stochastic processes, mutually exclusive spectral bands, with      205
Stochastic processes, power spectral density      40—42
Stochastic processes, response of linear systems to      42—45
Stochastic processes, stationary in the strict sense      37
Stochastic processes, stationary in the wide sense      37
Stochastic processes, stochastic averages      37—39
Stochastic processes, z-transform representations      39—40
Subband adaptive filters      9 293 see "Synthesis
Subband adaptive filters, application to acoustic echo cancellation      317—319
Subband adaptive filters, comparison with the FBLMS algorithm      319—320
Subband adaptive filters, computational complexity      306—307
Subband adaptive filters, decimal ion factor and aliasing      307—309 315 317
Subband adaptive filters, delay (latency)      302 305 306
Subband adaptive filters, misadjustment      309
Subband adaptive filters, selection of analysis and synthesis filters      303—306
Subband adaptive filters, slow convergence, problem of      304
Subband adaptive filters, stability      303
Subband adaptive filters, structures      302—304
Subband adaptive filters, structures, synthesis dependent      304
Subband adaptive filters, structures, synthesis independent      303
Superposition      2
System function      34—36
System identification      10
System modelling      10—11 157—159 324
Tap inputs      3
Tap weights      3
Tap weights perturbation      152 186 194 285 309
Tap-input vector      51
Tap-weight misalignment      196 435
Tap-weight vector      51
Tapped-delay line filter      see "Transversal filter"
Target response      13 344
Time and ensemble averages      46 49
Time constants      see "Names of specific algorithms"
Trace, of matrix      93 154
Tracking      11 460 471
Tracking, comparison of adaptive algorithms      479—485
Tracking, convergence and      471 496
Tracking, formulation of      471—472
Tracking, independence assumption      472
Tracking, multivariate random-walk process      472
Tracking, noise and lag misadjustments      477
Tracking, optimum step-size parameters for      477—479
Tracking, process noise vector      472
Tracking, unified study      472 see
Training mode      11 13
Transfer function, backward prediction-error filters      373
Transfer function, definition      2 34
Transfer function, forward prediction-error filters      373
Transfer function, I1R fine enhancer      334
Transform domain adaptive fillers      201 293 see
Transform domain adaptive fillers, lattice predictors and      370
Transform domain adaptive fillers, minimum mean-square error      203
Transform domain adaptive fillers, overview      202—204
Transform domain adaptive fillers, Wiener — Hopf equation      203
Transform domain LMS algorithm      208—209 see "Sliding
Transform domain LMS algorithm, comparison with the conventional LMS algorithm      218 219
Transform domain LMS algorithm, comparisons among different transforms      221—223
1 2 3 4
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте