Авторизация
Поиск по указателям
Hamming R.W. — Numerical methods for scientists and engineers
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Numerical methods for scientists and engineers
Автор: Hamming R.W.
Аннотация: Numerical methods use numbers to simulate mathematical processes, which in turn usually simulate real-world situations. This implies that there is a purpose behind the computing. To cite the motto of the book, The Purpose of Computing Is Insight, Not Numbers. This motto is often thought to mean that the numbers from a computing machine should be read and used, but there is much more to the motto. The choice of the particular formula, or algorithm, influences not only the computing but also how we are to understand the results when they are obtained. The way the computing progresses, the number of iterations it requires, or the spacing used by a formula, often sheds light on the problem. Finally, the same computation can be viewed as coming from different models, and these different views often shed further light on the problem. Thus computing is, or at least should be, intimately bound up with both the source of the problem and the use that is going to be made of the answers—it is not a step to be taken in isolation from reality.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Издание: 2nd edition
Год издания: 1987
Количество страниц: 721
Добавлена в каталог: 03.04.2011
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Newton’s method, convergence of 70
Newton’s method, faults of 68
Newton’s method, in two variables 109
Newton’s method, modified 69
Newton’s method, square root 168
Noble, Ben 131
Noise 166
Noise of quantization 609
Noise, in least squares fitting 464
Noise, simulation 145
Noninterpolatory formulas 11 289
Nonlinear transformations 205
Nonpolynomial approximation for differential equations 419
Nordsieck, A. 409
Normal equations 438
Normal law 432
Numbers 19
Numbers, combined 24
Numerical integration, of differential equations 379 393 412
Numerical integration, of differential equations of Fourier transform 639
Numerical integration, of differential equations of Laplace transform 635
Numerical verification of methods 410
Numerov’s method 416
Nyquist (folding) frequency 14
Nyquist interval 514 551 564
Nyquist interval, 575
Olver, F. W. J. 223
Open shop 709
Optimization 657
Optimization with constraints 662 673 675
Orthogonal functions 444
Orthogonal functions, orthonormal 445
orthogonal matrices 691
Orthogonal polynomials 452
Orthogonal polynomials, quasi 462
Orthogonal transformation 692
Overflow and underflow 57
Parseval, A. von 452
Parseval’s Inequality 542
Periodic functions 503
Periodic functions, error term 519
Periodic functions, interpolation 516
Periodic functions, Laplace transform of 632
Pinkham formula 310—311
Pinkham formula, derivation of 312
Pinkham, Roger 135 173
Polynomial approximation 224
Polynomial approximation, difficulty of 238 255 340 352
Polynomial approximation, interpolation 226
Polynomial, equally spacing of values 155
Polynomial, equally spacing of values, zeros of 98
Power spectrum 515 553
Predictor-corrector methods for differential equations 383 393
Principle of the argument 89
Prony’s method 621
Prony’s method with constraints 623
QR algorithm 699
Quadratic 41
Quadratic, roots of 42
Quality control 434
Quantization 16
Quantization of signal 603
Quantization, noise 609
Quantization, remarks on 613
Quantization, statistical distribution 607
Quantization, theorem 611
Quasi-orthogonal polynomials 462
Radau integration 328
Raisbeck, G. 529
Ralston integration 332
Ralston, A. 77 308 414
Random mantissas 143
Random numbers 132
Random numbers, distributions 142
Random numbers, generation of 137—138
Random numbers, sources of 136
Random numbers, testing 141
Random process 27
Range arithmetic 167
Rank 119
Rational function approximation 495
Rational function approximation, Chebyshev 498
Rational function approximation, least squares 497
Real zeros 59 104
Reciprocal differences 498
Reciprocal distribution 6 34
Reciprocal distribution, product 35
Reciprocal distribution, quotient 37
Reciprocal distribution, random mantissas 143
Recurrence relation, Chebyshev 221
Recurrence relation, convergence of 222
Recurrence relation, trigonometric functions 221
Relative error 6 23
Relative stability 389 391 399
Remainder theorem 52
Repeated evaluations of functions 57
Riemann zeta function 177 200
Riemann zeta function, table of 176
Rosanoff, R. 127
Roundoff 4 25
Roundoff, amplification 171
Roundoff, avoidance of 4 42
Roundoff, correlated 369
Roundoff, estimation 166 174
Roundoff, in the large 27
Roundoff, noise 400 563
Roundoff, noise, noncorrelated 344
Roundoff, noise, polynomial 53
Roundoff, noise, statistics 170
Roundoff, noise, table of differences 564
Run test 465
Runge — Kutta method 413 641
Sample polynomials 235
Sampling theorem 552 557
Scaling of simultaneous linear equations 116
Schreider, Y. A. 145
Schweikert, D. C. 349 355
Series expansions 46
Shanks, D. 205
Sheppard’s corrections 609
Shifted Chebyshev polynomials 481
Shifting 38
Sigma factors 534—536 538
Signal quantization 603
Similar matrices 690
Simpson’s formula 11 244 246 248 254 275 276 360 371 578 579
Simpson’s formula, composite formula 311
Simpson’s formula, half formula 254
Simulation 640
Simulation, languages 641
Simultaneous linear equations 7 112
Sine integral 154
Singularities 649
Singularities, in differential equation 652
Skoblya, N. S. 635
Smoothing 567
Smoothing, Chebyshev 571
Smoothing, essay on 597
Smoothing, least squares 468 570
Spectrum 515 553
Spiegel, M. R. 629
Splines 349
Square root ot a number 218
Stability 5 358 366 375 396
Stability of Euler’s corrector 388
Stability of Euler’s predictor 387
Stability, experimental verification 375
Stability, region 368 398
Statistics of roundoff 27 170
Steepest descent 667
Stiff equations 421 643
Stirling interpolation formula 306
Stirling number generating function 187
Stirling numbers, first kind 160
Stirling numbers, first kind, second kind 161
STIRLING, JAMES 160
Subscript notation 359
Subtabulation 241
Successive substitution method 75
Summation calculus 181
Summation calculus, by parts 183
Summation calculus, notation 181
Summation of powers of 184 187
swindles 145
Symmetric matrix 688
Synthetic division 51 56
Systematic errors 180
Systems of equations 391
Taylor series method 246
Taylor series method, flaw in 272
Taylor series method, remainder 70
Thatcher, H. C., Jr 205
Three-eighths rule 371 404 578
Three-term recursion 454
Three-term recursion, use of 460
Throwback 309 443 493
Tick, Leo 579
Tick’s rule 579 590 591
Tracking zeros 76
Transfer function 577
Transform approximation 16
Transpose matrix 688
Trapezoid Rule 244 576 579
Traub, J. 77
Tridiagonal matrix 694
Truncation error 5 362 394
Tukey, J. W. 182 540 652
Two-point problems 423
Ultraspherical polynomials 447 681
Ultraspherical polynomials, differential equation 447
Ultraspherical polynomials, proof of orthogonality 447
Ultraspherical polynomials, use of 471
Universal matrices 253
Universal matrices, Hermite 281
Use of derivatives 277
Use of differences 296
Vandermonde 230 681
Vandermonde, determinant 233
Vandermonde, inverse 251
Variable metric methods 671
Variance 28 172
Variance of gamma function table 176
Variance of random number 143
Variance of roundoff 143
Weierstrass’ theorem 13
wronskian 653
Wynn, P. 206 207
Youden, W. J. 180
Zajac, E. E. 422
zeros 7
Zeros of polynomials 98
Zeros, complex 78
Zeros, real 59
Zeta function 198 200
Zeta function, table of 176
Реклама