Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Polya G. — Mathematical Discovery: On Understanding, Learning and Teaching Problem Solving Combined Edition
Polya G. — Mathematical Discovery: On Understanding, Learning and Teaching Problem Solving Combined Edition



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Mathematical Discovery: On Understanding, Learning and Teaching Problem Solving Combined Edition

Àâòîð: Polya G.

Àííîòàöèÿ:

Combining standard Volumes I and II into one soft cover edition, this helpful book explains how to solve mathematical problems in a clear, step-by-step progression. It shows how to think about a problem, how to look at special cases, and how to devise an effective strategy to attack and solve the problem. Covers arithemetic, algebra, geometry, and some elementary combinatorics. Includes an updated bibliography and newly expanded index.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1981

Êîëè÷åñòâî ñòðàíèö: 432

Äîáàâëåíà â êàòàëîã: 24.01.2011

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
'Blind Man's Rule', (Euler)      1 55
5-prism      2 151 154
A priori      1 119
abbreviations      1 xvii
Abel, Niels Henrik      1 188 2
Abracadabra      1 68—73
Abstraction      1 30 56
Adam, Charles      1 56
Aeppli, Alfred      1 xiii
Age of Reason (The)      2 60—61
Alexanderson, Gerald L.      1 vii xiii xvi
Algebra, for solving word problems      1 22 24
Alternating procedure      2 50—51
American Mathematical Monthly      2 112
Analogue, to Heron's theorem      1 45
Analogue, to Pythagoras' theorem      1 34 45
Analogy      1 13 2 52 86 124 149 H I II 27—28 see specialization
Analogy, binomial and polynomial coefficients      1 87—88
Analogy, of Heron's theorem      1 45
Analogy, of Pythagoras' theorem      1 34 45 H
Analogy, Pascal's and Leibnitz's triangles      1 88—90
Analogy, plane and solid geometry      1 12—13 50—51 83 2 108 H 235 I 45—47
Analysis      2 23 31 see
Angle, dihedral      1 12 2
Angle, trihedral      1 12
Anticipation      1 58—59
Aphorismen      2 99
Archimedes      1 38 44 57 98 2 163 H I 166—167
Area of triangle      1 34—35
Ariadne, The Thread of      1 148
Aristotle      2 71
Arithmetic mean      1 98
Ars Conjectandi      1 76
Ass of Buridan (The)      2 161—162
Auxiliary problem      1 18 2 96 H
Auxiliary problem, equivalent      2 37—39 H
Auxiliary problem, figures      1 14—15
Auxiliary problem, more, or less, ambitious      2 39—40 H
Auxiliary problem, remoter      2 41—42
Baron, Julius G.      2 202
Beckenbach, E.F.      2 175
Bernoulli, Jacob      1 76
Bernoulli, polynomials      1 62—68
Binomial coefficients      1 71—75
Binomial formula      1 63 65 67
Binomial theorem      1 75 91—93
Bolzano, Bernard      2 184 H
Borel, Emile      2 127
Boutroux, P. (and L.Brunschvicg)      1 67
Bradley      2 71
Bright idea      1 15 23 62 2 H
Brunschvicg, L. (and P.Boutroux)      1 67
Buridan      2 161
Butler, Samuel      2 60
Carbon atom (the)      2 188
Carroll, Lewis      1 41
Carry out your plan      2 7 31 H
Cartesian pattern      1 22—59
Cartesian pattern, classroom examples      1 29—32
Cartesian pattern, geometric examples      1 32—37
Cartesian pattern, wider scope      1 129—133
Case history      1 vi 9
Cavalieri      2 32 183
Ceteris paribus      2 93
Chains of equivalent problems      2 38—39
Checkmate in two moves      1 152
Choice between three plans      2 32
Circle, circumscribed      1 5
Circle, inscribed      1 5
Classroom examples of Cartesian pattern      1 29—32
Comparison of solutions to a word problem      1 25
Conclusion      1 121 2 H
Conclusion, how can you prove such a      2 26 34
Condition      1 4 119—120 129—133 2 78 H see data condition"
Condition, clauses      1 4 122
Condition, express by equations      see "Pattern Cartesian"
Condition, keep only a part      1 4 17 33 147 2 H
Condition, major clause      1 140
Condition, redundant      1 42—44 I 200—202
Condition, split the condition      1 5 6 19 27 129—133 150
Condition, sufficient, or insufficient, to determine the unknown      1 18 41—42 54 55 57—58 H I
Condition, the clause to begin with      1 138—142 148—149 151—153
Condition, using the whole      see "Did you use all of the data?"
Conjecture      see "Guess"
Consistence, Independence and      1 57—58
Constructions, geometric      1 20
Constructions, ruler and compass      1 3 20 32
Contained in, sets      1 20
Continuous transition      1 10 37 2
Could you solve part of the problem?      1 40 45
Counterexample      2 49—51 H
Courant, Richard      1 20 32
Critique of Pure Reason      1 99
Crossword puzzle      1 32—33 131 138—139 2
cube      2 151 154
Cuboctahedron      2 205
Curvilinear quadrilateral      1 44
Dante      2 54 I
DATA      1 3 119—120 127—128 2 H see data condition"
Data, derive something useful from      1 7 2 H
Data, to determine this kind of unknown      2 85—86
Data, variation of      1 10 31 101 H
de Montaigne, Michel      2 102
Decimals, periodic      2 164—165
Decisions      2 65—66
Definition      2 81 83 H
Denk, Franz      2 138 207
Descartes, on polyhedra      2 154 I
Descartes, Rene      1 1 22 23 27—28 55—59 61 115 129 2 12 36 77 78 126—127 149—158 184 H II 142
Descartes, Rules for the Direction of the Mind      1 22 26—28 55—56 58—59 2
Descriptive geometry      2 12
Deus ex machina      1 64 2 II
Diagram      2 68—71
Did you use all the data (the whole condition, the whole hypothesis)?      1 17 102 2 H 152 II 162—163
Difference equations, homogeneous      1 108
Differential equations      1 96
Differential equations, homogeneous linear      1 108
Dihedral angle      1 12 2
Diophantine problem      1 55
Diophantus      2 187
Discipline of the mind      2 12 77—88
Discovery, Story of a Little      1 60—62
Do not commit yourself      2 34
Do you know a related problem?      2 80 H
dodecahedron      2 153—154
Dodecahedron, rhombic      2 205
Dodgson, Charles      1 41
Dudeney, H.E.      1 207
Duncan, Isadora      2 134
Duncker, Karl      2 65 67 72 H
Economy      2 91—92 96
Egyptian Problem, An      1 48
Einstein      2 102
Elwes, R.H.H.      2 134
Empty set      1 20
Equal sets      1 20
Equations, as many as unknowns      1 54
Equations, differential      1 96
Equations, fewer than unknowns      1 55
Equations, homogeneous linear difference      1 108
Equations, homogeneous linear differential      1 108
Equations, incompatible      1 58
Equations, inconsistent system of      1 58
Equations, more than unknowns      1 54
Equations, n in n unknowns      1 142—145
Equations, self-contradictory system of      1 58
Equations, setting up      1 26
Equations, system of      1 28 2
Equations, system of four      1 129—130
Equivalent problems      1 125 2
Euclid      1 3 43 104 118 122 127 2 36 85—86 152 184 I
Euclidean constructions      1 3 20 32
Euler, 'Blind Man's Rule'      1 55
Euler, Leonhard (1707—1783)      1 46—48 55 72 2 I 9 18—22 30—34 90—102 106—107 121 II 95—96
Euler, line      2 48
Euler, on polyhedra      2 149—158 176 I 52—58
Example, from a puzzle      1 39—40
Example, from physics      1 37—39
Example, pattern      1 4—6
Example, puzzling (cartesian)      1 41—44
Expanding pattern      1 40
Exploring the neighborhood      2 194
Extrapolation      1 100
Extreme case      1 10
Fact and conjecture      2 168
Fejes-Toth, L.      2 164
Fibonacci, (Leonardo of Pisa)      1 49
Fibonacci, numbers      1 109 2
Fibonacci, numbers (Binet formulas for)      1 196—197
flexibility      2 35 II
Folding, cardboard      1 12—13
France, Anatole      2 142
Frustum (of a right pyramid)      2 2—10
Function      1 99—100
Galileo      1 109 2 I 194—196
Galois, Evariste      2 88
Gauss, Carl Friedrich      1 60—62 2 I
Generalization      1 25 48 53 62 64 77 81 83 88 92 111 112 175 2 152 H I 22—23 II
Generalization and specialization      2 51—52
Generalization, general formulation advantageous      1 69
Generalization, letters for numbers      1 25 44 162 H
Generalization, observe and generalize      1 76 84 2 152 H I
Generalization, specialization, and analogy      2 53 80 124 I
Genetic principle      2 132—133
Genius, the expert, and the beginner      2 97
Geometric constructions      1 3—4 20
Geometric mean      1 98
Geometry, descriptive      1 12
Geometry, plane      1 48
Geometry, solid      1 34 50—51 2
Gestalt      2 68
Given      1 3
Go back to definitions      2 194
Goldbach, Christian      1 121 I
Gothic tracery      1 17 32—33 44
Graphic time table      1 52—54
Guess      1 34 46 79 95 2 105 124 143—168 I II
Guess, examine your guess      2 156—157 168 H see "Induction"
Hadamard, Jacques      1 113 2 184 H 199
Haeckel, Ernest      2 133
Harmonic mean      1 98
Harmonic triangle      1 88—89
Hartkopf, Werner      1 ix 2 184
Have you seen it before?      1 147
Heath, T.L.      1 98
Hermite, Charles      2 143
Heron's (also Hero's) theorem      1 34—35 2 158 see
Heron's (also Hero's) theorem, analogue to      1 45
Heuristic      2 10
Heuristic, rat's maze      2 74
Hilbert, David      2 127
Hilgard, E.R.      2 100
Hilton, Peter      1 vii xvi 2
Hobbes, Thomas      2 22
Homothetic figures      1 9
How can you get THIS kind of thing (unknown, conclusion)?      1 34 36 110 2 6 29—30 79 86 see or kind "Theorem or
Hypothesis      1 121
Hypothesis and conclusion      1 121 125 127 2 78 94 H
Hypothesis to derive this conclusion      2 85—86
icosahedron      2 153—154
If you cannot solve the proposed problem      1 10 69 24 H
Incompatible equations      1 58
Inconsistent system of equations      1 58
Independence and consistence      1 57—58
Indeterminate problem      1 99—101
Indeterminate system of equations      1 58
Induction      1 91—92 183 2 H I I II see observe
Induction, fundamental inductive pattern (heuristic syllogism)      H 186—190 II
Induction, mathematical      1 73—75
Induction, observe and explain regularities      1 94 189 190 2 181 H I
Induction, verification (in particular cases, of consequences)      1 92 2 153 154 H
Inequality      1 51
Inside help, outside help      2 135—137 H
Interpolation      1 99—101
Interpretation      1 30 44
Interpretation, mechanical      1 146—148
Interpretation, optical      1 142—146
Interpretation, reinterpretation      1 149—155
Intersection, of sets      1 21
Inversion of a power series      1 95
Is there a solution?      2 79 H see sufficient or to
Isolation and combination      2 68—69
Isoperimetric problem      2 144—145
James, William      1 117 2 H
Kant, Immanuel      2 99 103
Keep part of the condition      1 33
Kepler, Johannes      2 123 181 I 196—198
Key facts      2 81 85
Key figure      1 167
Keynes, J.M.      2 161
Klein, Felix      2 126
Kohler, Wolfgang      2 36 H
Krauss, F.      2 184 H
Lagrange, interpolation formula      1 101—104
Lagrange, Joseph      1 104 195
Lakatos, Imre      2 51 127 184
Language, algebraic (mathematical)      1 24 2 124 H
Language, algebraic (mathematical), of geometric figures      2 85 124—125
Lattice point      1 202
leap years      2 194
Learning, Three principles of      2 102—104
Leibnitz's Harmonic Triangle      1 88—89
Leonardo of Pisa (Fibonacci)      1 49
Lichtenberg, Georg      2 61 99 103
Lighthouses, Three      1 16—17
Lindemann, Ferdinand      1 126
linear combination      1 106—107
Listening posts, three      1 19
Loci, patterns of      1 3—21
Loci, two for a function      1 140—142
Locus      1 4 5 133
Loewner, Charles      1 xv 2
Logothetti, Dave      1 xvi
Look at the unknown      2 87 H see or kind
Mach, Ernst      2 184 H I
Magic square      1 149
Maps      2 129—132
Mariotte      2 62
Mathematical induction      1 73—75 82 H I
Mathematische Schriften      2 99
Maxwell, James Clerk      2 133
Mean, arithmetic      I 98
Mean, geometric      1 98
Mean, harmonic      1 98
Medians of a triangle      1 11
Meiklejohn, J.M.D.      2 99
Mental inertia      I 63
metaphors      2 1—2
method      see also "Pattern" "Result
Method of successive approximations      1 26
Method of undetermined coefficients      1 93—94
Mice and men      2 75—76
Mobilization and organization      1 57 2 66—67 73 H
Mobilization and organization, diagram (How we think)      2 69
Modus operandi      1 122
Monroe, Marilyn      2 134
Morphological structure      2 155
Mozart, Wolfgang      2 102
Multiplicity of approaches      1 75 83 109
n-double-pyramid      2 153—154
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå