Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Carter R.W. — Simple groups of Lie type
Carter R.W. — Simple groups of Lie type



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Simple groups of Lie type

Автор: Carter R.W.

Аннотация:

Since Chevalley showed in 1955 how to construct analogues of the complex simple Lie groups over arbitrary fields, these 'simple groups of Lie type' and their twisted analogues have been the subject of detailed investigation from a number of different points of view. This book is intended to serve as an introduction to the theory of Chevalley groups. It is not an exhaustive account of these groups, but concentrates on the basic results in the structure theory of the Chevalley groups and the twisted groups.
The Chevalley groups are studied in this book as groups of automorphisms of Lie algebras. This approach implies a concentration on the adjoint Chevalley groups—indeed the universal Chevalley groups and other isogenous groups have only been touched on in the development. In developing the theory we have found it necessary to assume a certain familiarity with the theory of simple Lie algebras over the complex field. Fortunately several good accounts of this theory are now available, and the information which we need about the simple Lie algebras has been collected together in a survey chapter...


Язык: en

Рубрика: Математика/

Серия: Сделано в холле

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1972

Количество страниц: 346

Добавлена в каталог: 04.12.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Rank of a Lie algebra      35
Ree groups      251
Ree's theorem      184
Reflections      12 284
Retractions      282 296
Root subgroups, of Chevalley groups      68
Root subgroups, of twisted groups      233 235
Root systems      12 45—49
Roots of a simple Lie algebra      36
S, an equivalence class in $\Phi$      227
S, the sum of the fundamental weights      145
Semi-simple Lie algebra      36
simplex      274
Simplicity, of Chevalley groups      172
Simplicity, of groups with (B,N)-pair      170
Simplicity, of twisted groups      262
Solomon's theorem      135 143
Special pair of roots      58
Sporadic simple groups      303
St A, the star of an element A in a chamber complex      274
Steinberg's theorems, on automorphisms of finite Chevalley groups      211
Steinberg's theorems, on generators and relations for Chevalley groups      190
Steinberg's theorems, on generators and relations for the Weyl group      23 25
Steiner system      303
Structure constants      52 55 58
Structure constants, for the Lie algebra $G_{2}$      211
Subalgebras of Lie algebras      33
Suzuki groups      251 307
Symmetric algebra      123
Symmetric group      124
Symmetric polynomials      124
Symmetry of Dynkin diagram      200 221—223
Symplectic groups      3 184 186
Tits' theorems, on finite groups with (B,N)-pair      302
Tits' theorems, on parabolic subgroups      112 113
Tits' theorems, on simplicity of groups with (B,N)-pair      170
Tits' theorems, on the apartments of a building      296
Transitive extensions      304 306
Twisted group, definition      226
Type, of element in a building      298
Type, of element in a chamber complex      283
Type-preserving automorphisms      284 290 291 299
U, the unipotent subgroup of a Chevalley group G generated by the positive root subgroups      68
Unipotent linear transformation      68
Unipotent subgroup, of a Chevalley group      68 78 104 114
Unipotent subgroup, of a twisted group      231
Universal Chevalley group      197
V, the unipotent subgroup of a Chevalley group G generated by the negative root subgroups      68
W, a Weyl group      13
Weyl group, of a Chevalley group      102
Weyl group, of a root system      13
Weyl group, of a twisted group      221—224 226 228
Weyl's theorem      149
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте