Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Sagle A. A. — Introduction to Lie groups and Lie algebras
Sagle A. A. — Introduction to Lie groups and Lie algebras



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Introduction to Lie groups and Lie algebras

Автор: Sagle A. A.

Аннотация:

This text is intended for the beginning graduate student with minimal preparation. However since Lie groups abstract the analytic properties of matrix groups, the student is expected to have some knowledge of senior level algebra, topology, and analysis as given in юте of the references. In Chapter 1 we review some advanced calculus and extend these results to manifolds in Chapter 2. Consequently the reader knowing these results can skip these chapters but should pay attention to the examples on matrix groups. After this the reader probably should follow the order given in the contents noting that the first part of the text is about Lie groups while the algebraic study of Lie algebras begins in Chapter 9. We have not attempted to prove all basic results so the serious student should take the indicated detours to such texts as those by Freudenthal and de Vries, Helgason, Jacobson, or Wolf. In particular the student must develop his own taste in this subject and ours is only one point of view.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1973

Количество страниц: 372

Добавлена в каталог: 31.10.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Manifold      40 41 43
Matrix ring or algebra      192 233
Maximal atlas      43
Maximal weight      327 329
Mean value theorem      17
Metric      3
Minimal polynomial      236
Models      284 304
Module      188 189
Multilinear map      20
Multiplication on homogeneous spaces      347
Multiplicative system      347
N(h)      265
Natural projection      97
Nilpoient radical      224 258
Nilpotent component of endomorphisms      237
Nilpotent endomorphisms      222 238
Nilpotent group      65 216 218 222
Nilpotent Lie algebra      66 219
Nilpotent Lie group      218
Nonassociative algebra      35 61 145 157 229 349
Nondegergerative form      57 228 231 236
Nonisotropic      231
Norirmalizer      265
Norm      3 194
Normal chart      124 129
Normal neighborhood      124
Normal subgroup      98 164
Normal typological group      96
Nucleus      92 108 109
O(N)      58
One-parameter group      80
One-parameter subgroup      119 120
open      3
Open ball      3 41
Open submanifold      41
operate      100
Orbit      100
Order of root system      288
Orthogonal complement      231
Orthogonal group      58
Outer automorphism      311
Paracompact      96
Parallel translation      339
Partial derivative      14
Path      168
Path connected      54
Positive definite symmetric bilinear form      2 58
Power associative      349
Product group      93
Product manifold      45
Projection map      74 76
Pseudo-Riemannian connection      341
Pseudo-Riemannian homogeneous space      341
Pseudo-Riemannian manifold      340
Pseudo-Riemannian structure      340
Quadratic algebras      196
Quaternion algebras      196
Quaternion numbers      197
Quotient algebra      152
Quotient group      98 152
Quotient module      189
Quotient topology      97
R(X)      158 191
R(X,Y), $R_{\phi}$      340
rad G, rad g      207
Rad(A)      192
Radical      192 207 224 233 258
Rank of Lie algebra      265
Real analytic manifold      43
Real form      186 262 333
Real form of a representation      334
Real representation      333
Realification      185 262
Realization      185
Reductive      243 251
Reductive homogeneous space      165 343
Reductive pair, (G, H) or (g, h)      165
Regular element of a Lie algebra      265
Regular function      71 96 265 136
Representation      160 164 188
Restricted holonomy group      342
Riemannian structure      340
Right invariant metric      95
Right translation R(a)      91
Root spaces      268 278
Root system      284
Root system basis      288
Roots      268 285
Schur's lemma      191 242 247
Second derivative      18
Seinidirect sum      206 255
Semisimple associative algebra      192 235
Semisimple component of an endomorphism      237
Semisimple endomorphism      236
Semisimple Lie algebra      192 207 250
Semisimple Lie group      207
Semisimple module      190 246
Semisimple nonassociative algebra      316
Senudirect product      93
Separation axioms      95 95
Signature of a Lie algebra      316
Simple Lie algeora      183 207
Simple Lie group      207 334
Simple module      190 246
Simple nonassociative algebra      191 232
Simply connected      136 170
Skew symmetric      13 60
SO(p, q), so(p, q)      59 185
Solvable group      202
Solvable Lie algebra      204 220
Solvable Lie group      203 210
Special linear algebra sl(V), sl(n, R), sl(n, K)      55 61 147 271 317
Special linear group SL(V), SL(n, R)      55 61 147
Special orthogonal algebra, SO(n)      59 61 147
Special orthogonal group, SO(n)      59 61 147
Special unitary algebra su(n)      61
Special unitary group SU(n)      61
Split composition algebra      197 199
Split erdomorphism      183 208 224
Split exact sequence      155
Split Lie algebra      183 264 316
Structure constants      182 301
Subgroup      97
Submanifold      49 70
Submersion      53 71
Submodule      153
Sup norm      5
Symmetric bilinear form      2 58
Symmetric neighborhood      92 103
Symmetric space      166
Symplectic algebra sp(n, R)      60
Symplectic group Sp(n, R)      60
T(M)      74
Tangent      62
Tangent bundle      74
Tangent map      69
Tangent vector      72
Taylor's formula      23
Taylor's series      125
Tensor product      178 190 261
Tensor product of algebras      180
Tensor product of homomorphisms      180
Tensor product of representations      330
Tf= Tf(p) = df(p)      68
Topological group      90
Topological manifold      41
Topological subgroup      97
Topological transformation group      100
Torsion tensor, Tor, Tor(X, Y)      340
Torus $T^{n}$      45 99 104 139 155
Trace form      229 241
Trace tr T      9
Transitive      100
TRANSPOSE      38
Triangular matrices      65 201
U(n), u(n)      60
Uniform convergence      5
Unital module      193
Unitary group      60
Universal covering group      263
Usual coordinates      41
V*      66
Vector bundle      76
Vector field      78
Weight      327
Weight function      209
Weight space      208 270 327
Weight vector      208
Weyl basis      301 317
Weyl group-W      283 285 288
Weyl's formula      332 314
Weyl's theorem      283 245 250
Wrap around function      50 54
Z(G)      103 336
[x, y]      36 80
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте