Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Mirsky L. — An introduction to linear algebra
Mirsky L. — An introduction to linear algebra



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: An introduction to linear algebra

Автор: Mirsky L.

Аннотация:

Rigorous, self-contained coverage of determinants, vectors, matrices and linear equations, quadratic forms, more. Elementary, easily readable account with numerous examples and problems at the end of each chapter. "The straight-forward clarity of the writing is admirable."—American Mathematical Monthly. Bibliography.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1990

Количество страниц: 433

Добавлена в каталог: 31.10.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Ostrowski’s inequality      212-13
Partitioned matrices      100-6
Periodic matrices      298
Permutation matrices      271
permutations      256-9
Permutations, groups of      257-8 271-2
Polar representation      425
Polarized, form      362
Polarized, form, operator      361
Polynomial, characteristic      195 197-208
Polynomial, identity and formal equality      24
Polynomial, in a matrix      97-99 201-8 342-3
Polynomial, minimum      203-4 207-8 297-8
Polynomial, monic      203
Positive definite forms      394 398-404
Power series of matrices      332-43
Premultiplication and postmultiplication      81
Principal axes, reduction of quadrics to      364-7
Principal, minor      197
Principal, minor, vector      237
Projection      130
Projective, classification of quadrics      380-1
Projective, classification of quadrics, group      263
Quadratic form(s), as product of two linear forms      374-6
Quadratic form(s), canonical forms      378
Quadratic form(s), definite and indefinite      394
Quadratic form(s), definition      357
Quadratic form(s), determinant      359
Quadratic form(s), diagonal forms      362
Quadratic form(s), equivalence      376-9
Quadratic form(s), general reduction      369-74
Quadratic form(s), law of inertia      377
Quadratic form(s), orthogonal reduction      362-3
Quadratic form(s), positive definite forms      394 398-404
Quadratic form(s), rank      360
Quadratic form(s), simultaneous reduction      408-15
Quadratic form(s), singular and non-singular      359
Quadratic form(s), unit’ forms      362
Quadratic operators      357-9 361-2
Quadrics, classification      380-5
Quadrics, classification, reduction to principal axes      364-7
Quaternions      265
Rank, of a bilinear form      356
Rank, of a linear transformation      277
Rank, of a matrix      136-40
Rank, of a quadratic form      360
Rank, properties      158-63 169
Rank, rank theorem      139
Rank, rank-multiplicity theorem      214
Rational, functions of matrices      99 100 201-2 204-5 335
Rational, functions of matrices, reduction      185
Reduction, f hermitian forms      387
Reduction, f matrices to normal form      173-6
Reduction, f quadratic forms      369-74
Reduction, f quadrics to principal axes      364-7
Reduction, Lagrange’s method      371-4
Reduction, of bilinear forms      368-9
Reduction, orthogonal reduction of quadratic forms      362-3
Reduction, orthogonal reduction of symmetric matrices      302-4
Reduction, rational      185
Reduction, simultaneous reduction of two hermitian forms      415
Reduction, simultaneous reduction of two quadratic forms      408-15
Redundant equations      131
Reference field      40
Regular characteristic roots      294
Replacement theorem of Steinitz      53 (footnote)
Representation, of bilinear operators by bilinear forms      354
Representation, of groups by matrices      267-72
Representation, of linear manifolds by vector spaces      60
Representation, of linear operators by matrices      114-22
Representation, of quadratic forms as sums of squares      370-1
Representation, of quadratic operators by quadratic forms      358
Representation, of rotations by orthogonal matrices      233-43 246-7
Representation, of rotations by skew- symmetric matrices      243-5
Representation, polar      425
Rigid motion      246-7
Rotation, axis      240
Rotation, in space      236-47
Rotation, in the plane      233-6
Rotation, infinitesimal      249
Rotation, representation by orthogonal matrices      233-43 246-7
Rotation, representation by skew- symmetric matrices      243-5
Rotation, rotation group      263
Row, matrices and vectors      77
Row, matrices and vectors, rank      137
Scalar, matrix      76
Scalar, product      see Inner product
Scalars      40
Schmidt’s orthogonalization process      67-68
Schur and Toeplitz, theorem on normal matrices      305
Schur, inequality for characteristic roots      309-11
Schur, inequality for positive definite matrices      422
Schur, theorem on triangular canonical forms      307
Secular equation      196
Semi-definite forms      394 405-7
Separation      63
Signature      378-80 387-8 398
Signum      3
Similar matrices      119
Similarity, group      266
Similarity, orthogonal and unitary      266
Similarity, transformation      119
Simultaneous, equations      see Linear equations
Simultaneous, reduction of two hermitian forms      415
Simultaneous, reduction of two quadratic forms      408-15
Simultaneous, similarity transformations      316 22
Singular and non-singular matrices      87
Singular matrices, groups of      272-6
Skew-Hermitian matrices      209 232
Skew-symmetric matrices      208 227 243-5
Small vibrations      415-16
Square matrices      75
Steinitz’s replacement theorem      53 (footnote)
Sub-group      254
Sub-manifold      45
Sub-matrix      136
Sub-space      45
Sylvester, interpolation formula      221
Sylvester, law of inertia      377
Sylvester, law of nullity      162
Symmotnc, bilinear operators      361
Symmotnc, group      257
Symmotnc, matrix      183
toeplitz      see Schur
Total vector space      42
Trace      198
Transformations, congruence      182-5 266 358-60
Transformations, definition      113
Transformations, equivalence      177
Transformations, linear      114-22 277 356 360
Transformations, similarity      119
Transposition, of arrangements      3 258
Transposition, of arrangements of matrices      76 97
Triangle inequality      64
Triangular, canonical forms      306-9
Triangular, matrices      76
Unit, matrix      75
Unit, quadratic form      362
Unit, vector      64
Unitary, group      263
Unitary, matrices      229-32
Unitary, reduction of hermitian forms      387
Unitary, similarity      266
Value classes, definition      394
Value classes, determinantal criteria      400-7
Vandermonde determinant      17-18
Vector space, basis theorem      52
Vector space, definition      42
Vector space, generators      43
Vector space, spanned by given vectors      43
Vector(s), addition      41
Vector(s), characteristic      214
Vector(s), column type and row type      77
Vector(s), definition      40
Vector(s), length      63
Vector(s), linear combination      42
Vector(s), linear dependence      48 152-3
Vector(s), multiplication by scalars      40
Vector(s), norm      63
Vector(s), normalization      64
Vector(s), orthogonal and orthonormal      65
Vector(s), principal      237
Vector(s), zero      40
Weierstrass’s theorem on simultaneous reduction of two forms      410
Weyr’s theorem on matrix power series      332
Zero, divisors of      95-96 153-4
Zero, element of a linear manifold      45
Zero, matrix      75
Zero, vector      40
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте