Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Petersen K.E. — Ergodic theory
Petersen K.E. — Ergodic theory



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Ergodic theory

Автор: Petersen K.E.

Аннотация:

The author presents the fundamentals of the ergodic theory of point transformations and several advanced topics of intense research. The study of dynamical systems forms a vast and rapidly developing field even when considering only activity whose methods derive mainly from measure theory and functional analysis. Each of the basic aspects of ergodic theory — examples, convergence theorems, recurrence properties, and entropy — receives a basic and a specialized treatment. The author's accessible style and the profusion of exercises, references, summaries, and historical remarks make this a useful book for graduate students or self study.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1990

Количество страниц: 329

Добавлена в каталог: 31.10.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Strong topology (on group of m      71
Sub - Markov operator      120
Subadditive sequence      240
Submartingale      91 103
Submartingale Convergence Theorem      104 106
Subshift of finite type      153 162 273
Subskeleton      286
Supermartingale      103 105 106
Supremum (of a family of factors)      185
Swanson, L.      221 224
Symbolic cascades      153
sz      185
Szemer$\acute{e}$di - Furstenberg Theorem      150 (see also Ergodic Szemer$\acute{e}$di Theorem)
Szemer$\acute{e}$di Theorem      159 163
Szemer$\acute{e}$di, E.      162
Tchebychef, P. L.      158
Thomas, R. K.      61 279
Three-series theorem      94
Time mean      42 44
Toeplitz sequence      209
Topological dynamics      133 150
Topological entropy      264 265
Topological entropy, Bowen definition of      266 267
Topological entropy, of a symbolic cascade      266
Topological ergodicity      151 152
Topological strong mixing      151
Topological weak mixing      151
Topological weak mixing without strong mixing      210 212 214
Total function      189 191 202 208
Totoki, Haruo      9
Tower      197 200 Kakutani
Transition matrix      36 51 52 59
Transitivity, metric      42
Transitivity, regional      152
Translation of the torus (ergodicity of)      51
Translation on a compact group      153 (see also Group rotation rotation)
Trigonometric polynomial      148
Turan, Paul      162
Ulam. S. M.      72 99
Uniform distribution mod      1 156
Uniform function      189 190 202 208 210 329
Uniform mixing      64
Uniformly almost periodic      136 137 154
Uniquely ergodic      42 138 152 186 187 217
Unitary operator determined by a m.p.t.      24 43
Upcrossing lemma      104
Van der Waerden, Bartel L.      162
van der Waerden’s theorem      162 167 171 172
Varadarajan, V - S.      161
Varadhan, S.      133
Varga, Richard      7
Variational Principle      264 268 269 273
Veech, William A.      160 161
Very weakly Bernoulli      278 279
Ville, Jean      91
Virtual group      55
von Neumann - Kakutani adding machine      209 211
von Neumann, John      3 17 23 55 64 65 80 99 139 188
von Neumann’s Theorems on Lebesgue spaces      17 71
Walters, Peter      267
Wandering point      151
Wandering set      38 41 126
Weak law of large numbers      285
Weak mixing      57 58 64 65 152
Weak mixing, and density 0      73
Weak mixing, and eigenfunctions      64 72
Weak mixing, characterizations of      65 180
Weak mixing, of higher degree      151 163 179
Weak mixing, of roots and powers      72
Weak mixing, topological      151 152 180 210 212 214
Weak mixing, without strong mixing      71 210 212 214 217 219 220
Weak topology (on group of m      71 73
Weak-type ($p$, $q$) inequality      91
Weak-type (1,1) inequality      113 115 119 Maximal
Weakly Bernoulli      276 278 279
Weakly wandering set      41
Weiss, Benjamin      151 164 173 187 253 279 280
Weiss, Guido      107
Weyl, Hermann      50 149 156 158
White, H. E., Jr      72
Wiener, Norbert      27 75 76 87 88 91 102 108 114
Wright, Fred B.      39 46
Yosida. K$\hat{o}$saku      25 27 76 91
Zermelo, E.      35
Zero entropy      244
Zimmer, Robert J.      55
Zygmund, A.      107
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте