Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Stetter H. J. — Numerical polynomial algebra
Stetter H. J. — Numerical polynomial algebra



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Numerical polynomial algebra

Автор: Stetter H. J.

Аннотация:

In many important areas of scientific computing, polynomials in one or more variables are employed in the mathematical modeling of real-life phenomena; yet most of classical computer algebra assumes exact rational data. This book is the first comprehensive treatment of the emerging area of numerical polynomial algebra, an area that falls between classical numerical analysis and classical computer algebra but, surprisingly, has received little attention so far.

The author introduces a conceptual framework that permits the meaningful solution of various algebraic problems with multivariate polynomial equations whose coefficients have some indeterminacy; for this purpose, he combines approaches of both numerical linear algebra and commutative algebra. For the application scientist, Numerical Polynomial Algebra provides both a survey of polynomial problems in scientific computing that may be solved numerically and a guide to their numerical treatment. In addition, the book provides both introductory sections and novel extensions of numerical analysis and computer algebra, making it accessible to the reader with expertise in either one of these areas.

Graduate students or academic and industrial research scientists in numerical analysis and computer algebra can use Numerical Polynomial Algebra as a textbook or reference book. The book is clearly written and standard numerical linear algebra notation is used consistently throughout. Principles and their application are explained through numerical examples and exercises avoiding excessive technical detail. Numerous open-ended problems invite further investigation and research.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2004

Количество страниц: 472

Добавлена в каталог: 31.10.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Normal set representation, admissible data      295
Normal set representation, algorithmic computation      418
Normal set representation, approximate      355 357
Normal set representation, approximate, refinement      358 363
Normal set, border subset      282
Normal set, border web      291
Normal set, boundary set      290
Normal set, feasible      57
Normal set, generic      317
Normal set, quasi-univariate      282
Norms of linear maps      81
Numerical basis computation      429
Numerical basis computation, empirical data      433
Numerical basis computation, pivoting      432
Numerical basis computation, reduction to zero      430 431
Numerical data      101
Numerical instability      110
O(1)      69
Orthogonal polynomials      137
Pivoting      432
plex      314
Polynomial      4
Polynomial combination      14
Polynomial division      157
Polynomial division, algorithm      157
Polynomial division, backward error      160
Polynomial division, empirical polynomials      160
Polynomial interpolation      61
Polynomial interpolation, approximation error      166
Polynomial interpolation, backward error      169
Polynomial interpolation, empirical data      168 407
Polynomial interpolation, multivariate      404
Polynomial interpolation, sensitivity      166
Polynomial interpolation, smoothing      169 407
Polynomial interpolation, univariate      163
Polynomial system, BKK-deficient      400
Polynomial system, cluster about $\infty$      403
Polynomial system, empirical      72
Polynomial system, in one variable      206
Polynomial system, multiple zero      328
Polynomial system, near-singular      387
Polynomial, empirical      71
Polynomial, homogeneous      4
Polynomial, sparse      5
Polynomial, support      4
Polynomial, total degree      4
Polynomial, zero set      15
Polynomials, order-leading term      315
Polynomials, orthogonal      137
Polynomials, spaces of      137
Polynomials, systems of      6
Polynomials, univariate      135
Positive-dimensional polynomial systems      447
Positive-dimensional polynomial systems, quotient ring with parameters      463
Positive-dimensional polynomial systems, quotient rings, normal sets      447
Positive-dimensional polynomial systems, zero sets from multiplication matrices      457 460
Problem, ill-conditioned      79
Problem, ill-posed      76
Problem, overdetermined, singular      77
Problem, well-posed      76
Product mapping      13
Pseudo-inverse      382
Pseudodivisor      184
Pseudofactors      255
Pseudomultiple      192
Pseudoresult sets      73
Pseudozero domains      152
Pseudozero domains, m-fold      202
Pseudozero domains, simultaneous      153
Quasi-univariate normal set      282
Quotient ring      31
Quotient ring, basis      29
Quotient ring, Lagrange basis      30
Quotient ring, multiplication matrices      34
Quotient ring, univariate      143
Rank      14
Reduced Groebner basis      320
Regular system      273 344
Regular system, Newton polytope      311
Regular system, number of zeros      309
Representation singularity      325
Residue class      29
Residue class ring      31
Result refinement      95
Result space $\cal Z$      73
Resultant      248
Ring      12
Ring, commutative      12
Round-off error      118
S-polynomial      292
Separating linear form      301
Singular linear system      382
Singular matrix eigenproblem      452
Singular matrix eigenproblem, algorithmic solution      454
Singular matrix eigenproblem, regular eigenvalue      453
Singular matrix eigenproblem, solution space      453
Singular point      246
Singular point, manifold structure      251
Singular polynomial system      381
Singular polynomial system, with diverging zeros      398
Singular problem      77
Singular zero      246
Singular zero, determination      249
Singularity manifold      325
Smoothing interpolation      407
Specified value empirical data      68
Stable numerically      109
Staircase      321
Support      4
Support, empirical      71
Sylvester matrix      178 185
Sylvester matrix, rank deficiency      208
System of polynomials      6
System of polynomials, complete intersection      18
System of polynomials, d-dimensional      19
System of polynomials, multivariate      273
System of polynomials, positive-dimensional      447
System of polynomials, resultant      248
Syzygy      27
Syzygy, (non)trivial      27
Syzygy, nontrivial      294
Syzygy, of border basis      290
Syzygy, trivial      294
S[p,q]      292
Taylor expansion      8
Tdeg      314
Term order      60 314
Term order, lexicographic, graded, total degree      314
Tolerance empirical data      68
Univariate ideal, basis      140
Univariate ideal, normal set      140
Univariate polynomials      135
Univariate polynomials, backward error of zeros      149
Univariate polynomials, common divisor      206
Univariate polynomials, common zeros      206
Univariate polynomials, decomposition      140
Univariate polynomials, division      157
Univariate polynomials, expansion      140
Univariate polynomials, interpolation      163
Univariate polynomials, intrinsic      135
Univariate polynomials, Lagrange basis      142
Univariate polynomials, multiple zeros      202
Univariate polynomials, normal form      140
Univariate polynomials, pseudozero domains      152
Univariate polynomials, real zeros      178
Univariate polynomials, stable      180
Univariate polynomials, zero cluster      195
Univariate polynomials, zeros      146
Univariate polynomials, zeros with large modulus      154
Unstable numerically      109
Valid instance      68
Valid result      74
Validity scale      69
Vandermonde matrix      142
Visualization      19
V[..]      17
Well-conditioned problem      79
Zero cluster      194 366
Zero cluster, asymptotic behavior      377
Zero cluster, dual space      367
Zero cluster, valid      367
Zeros, clustered about oo      204
Zeros, m-fold      43
Zeros, singular      246
Zeros, well-separated      152 198
Zeroset      15
Zeroset, continuity      305
Z[..]      15
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте