| 
		        
			        |  |  
			        |  |  
					| Авторизация |  
					|  |  
			        |  |  
			        | Поиск по указателям |  
			        | 
 |  
			        |  |  
			        |  |  
			        |  |  
                    |  |  
			        |  |  
			        |  |  |  | 
		|  |  
                    | van der Giessen E., Wu Theodore Y.-T. — Advances in Applied Mechanics, Volume 37 |  
                    |  |  
			        |  |  
                    | Предметный указатель |  
                    | | Aarts, R. G.      262 272 Abramowitz      102 107 109 164
 Acrivos, A.      177 180 188 192 208 228 231 237
 Agnon, Y.      18 82
 Airy’s model      37 119 158
 Akylas, T. R.      67 82
 Alfaro      214 227
 Allirot, D.      286 359
 Andrade, E. N. da Costa      287 359
 Anisimowicz      289 363
 Antonia, R. A.      253 275
 Apparent vorticity      40
 Ashby, M. F.      293 362
 Ashkenazi, S.      241 272
 Aspe, H.      214 227
 Astarita, G.      279 359
 Asymptotic expansion of beach-wave function and the ray theory      110—116
 Asymptotic reductive perturbation method      6
 Avula, X. J. R.      279 359
 B
  nard convection, Boussinesq approximation and surface deformation      179—183 B
  nard convection, conclusions      227 B
  nard convection, generalizations of classical theories      183—202 B
  nard convection, historical research      168—171 B
  nard convection, nonlinear waves and dissipative solitons      212—226 B
  nard convection, recent results on patterned convection      202—205 B
  nard convection, summary of results and limitations of classical theories      171—178 B
  nard convection, surface and internal waves and boundary- layer effects      205—212 B
  zier-splines, cubic      355 B
  nard, H.      168 228 Badratinova, L. G.      204 227
 Bailleux, R.      203 234
 Bale, D. S.      51 54 57 83
 Banijamali, B.      18 85
 Bankoff, G.      170 234
 Bar, D.      214 228
 Baransky, Y.      69 70 83
 Barenblatt, G. L.      253 272
 Barenghi, C. F.      262 263 272
 Batchelor, G. K.      254 272
 Bathymetry      7 95 96
 Bauer, G. H      262 263 272
 Bauschinger phenomenon      314
 Bazin, H.      215 222 228
 Beach-wave function      136
 Beach-wave function, asymptotic expansion of      110—116
 Beach-wave function, defined      94 98
 Beale, J.      23 82
 Behringer, R. P.      245 274
 Belin, F      269 276
 Benguria, R. D.      182 183 228
 Benjamin, T. B.      30 76 82 213 228
 Benney, D. J.      49 82
 Bensimon, D.      214 232
 Berg, J. C.      174 177 188 228 234
 Bernoulli equation      20
 Bessel function      103 109
 Bestehorn      203 205 228 230 236
 Betten, J.      279—290 292—296 298 299 303 304 306 309 311—314 316 318 319 323—328 346—355 357 359 360 361 363 364
 Bidirectional long-wave model      48—51
 Bidirectional long-wave model for normal run-up      116—118
 Bielert, F.      268 272 276
 Biggerstaff, M. I.      174 232
 Binary head-on collisions of bidirectional solitons      51—54
 Binary overtaking collisions of unidirectional solitons      54—57
 Biot number      172 174 204 205
 Birikh, R. V.      188 201 228
 Bisch, P.      197 201 231 235
 Block, M. J.      168 170 194 227 228
 Bodner, S. R.      290 361
 Boehler, J. P.      280 286 313 317 359 361
 Bolgiano, R.      258 272
 Bond number, diverging static      180
 Bond number, dynamic      177 209 220
 Bond number, static      175 191 192
 Bormann      286 360 361
 Bose, A.      188 237
 Bottom velocity base      14—15
 Bouasse, H.      215 222 228
 Boudart      177 228
 Boundary integral closure      20—23
 Boundary integral equation (BIE)      22—23
 Boundary integral equation method (BIEM)      92
 Boussinesq — Oberbeck approximation      171
 Boussinesq — Oberbeck approximation, and surface deformation      179—183
 Boussinesq, J.      5 16 41 82 212 214 216 228
 Boussinesq’s two-equation model      31 33
 Boussinesq’s two-equation model, 3D      212
 Boussinesq’s two-equation model, generalized channel      78
 Boussinesq’s two-equation model, generalized model      62—63 95 135 139 142—147
 Bragard, J.      202 203 213 228
 Breitbach, G.      346 351 361
 Brian, P.      177 228
 Briggs, M. J.      93 164
 Briskman, V. A.      201 228
 Britcher, C. P.      258 266 272 273
 Brocchini      91 164
 Brown, S. G. R.      302 303 361
 Brunt — V
  is  l  frequency      192 209 211 Bushnell, D.      248 250 273
 Busse, F. H.      170 180 186 187 203 229 235
 Butters      287 360 361
 Byatt — Smith, J. G. B.      51 82
 Camassa, R.      5 39 40 66 69 70 71 72 75 83
 Cardin, Ph      187 229
 Carneiro, G.      181 234
 Carrier, G. F.      91 101 122 138—141 164
 Casciola      67 83
 Castaing, B.      252 257 268 273
 Castellanos, A.      229
 Castillo, J. L.      214 229 230 237
 Cauchy stress tensor      288 290 294 341 346
 Cauchy — Green tensor      281 282
 Cauchy’s contour integral formula      20—21
 Center-of-mass (CM) frame      59—60
 Cerisier, P.      203 229
 Chabaud, B.      252 257 268 273
 Chaboche, J. L      290 361
 Chan, R. K. — C.      51 83
 Chandrasekhar, S.      170 229
 Chang, F. — P.      182 229
 Chang, H. — C.      214 229
 Chang, J. — H.      67 83 86
 Chang, K. — T.      182 229
 Chang, P.      78 83
 Channel shape effects on wave propagation and generation      78—80
 Channel shape factor      79
 Chappelear, J. E.      41 45 83
 Char, M. I.      181 229
 Chaussy, J.      252 257 266 273
 Chen, L. — Y.      177 229
 Chen, X.      67 78 83
 Chernyakov, A. L.      183 188 189 192 194 195 208 233
 Chevanne, X.      252 257 266 273
 Chiang, K. T      181 182 229
 Chill a, F.      252 257 268 273
 Cho, Y. — S.      93 164
 Choi, H. S.      19 67 85
 Choi, W.      5 39 40 67 83
 Chorin, A. J.      253 272
 Chow, C. L.      355 361
 Christov, C. I.      204 205 213 214 216 222 229 234 235 237
 Chrzanowski      290 292 361 362
 Chu, C. K.      69 70 83
 Chu, X. — L.      177 195 197 198 207 208 212 215 229 231 233 237
 Chwang, A. T      51 52 67 88
 Clark, A., Jr      3 85
 Classical flow rule      288
 Classical theory of plasticity      286
 Cloot, A.      202 229
 Coastal hydrodynamics      see Wave run-up
 
 | Cokelet, E. D.      23 85 Cole, J. D.      3 83 213 229
 Cole, S. L      67 83
 Colinet, P      192 203 208 209 210 212 213 214 216 220 221 222 229 233 235
 Condition of compatibility      289
 Confluent hypergeometric function      102 112
 Constantin, P.      253 273
 Constitutive equations      278 353
 Constitutive equations, interpolation methods for tensor functions      297—299
 Constitutive equations, material tensors of rank four and      313— 315
 Constitutive equations, polynomial representation of tensor functions      296—297
 Continuity tensors      331—340
 Continuum mechanics      see Tensor functions in continuum mechanics
 Cooker, M. J.      51 54 57 83
 Copson, E.      101 164
 Couette flow      200
 Courant, R.      215 229
 Craik, A. D. D.      77 83
 Creep behavior, nonlinear constitutive equations for      287—296
 Creep law, Norton — Bailey      288
 Creep law, Norton’s      299—303
 Creep law, Norton’s, including damage      303—306
 Creep potential hypothesis      288 289
 Creep potential theory      287
 Croquette, V.      214 232
 Cryogenic helium, advances of, as a test fluid      240—241
 Cryogenic helium, advantages of      261
 Cryogenic helium, aerodynamic forces      266
 Cryogenic helium, aerospace and navy applications      247
 Cryogenic helium, conclusions      271—272
 Cryogenic helium, differential pressure      266
 Cryogenic helium, disadvantages of      261—262
 Cryogenic helium, flow visualization      267—268
 Cryogenic helium, helium flow tunnel      258
 Cryogenic helium, high — Reynolds number turbulence, basic problems in      251—254
 Cryogenic helium, in geophysical flows      246
 Cryogenic helium, in solar convection      246
 Cryogenic helium, large-scale facilities, examples of      255
 Cryogenic helium, limitations of      270—271
 Cryogenic helium, mean flow velocity      265
 Cryogenic helium, mean temperature and its gradient      265 266
 Cryogenic helium, model testing and difficulties with extrapolation      248—250
 Cryogenic helium, properties of      243—245
 Cryogenic helium, questions about      241
 Cryogenic helium, reasons for research on ultra-high parameter values      247—254
 Cryogenic helium, refrigeration applications      255—256
 Cryogenic helium, second sound      245
 Cryogenic helium, temperature fluctuations      268
 Cryogenic helium, thermal convection experiment      257—258
 Cryogenic helium, tow tanks using liquid      259—260
 Cryogenic helium, turbulence, summary of instrumentation development for      265—270
 Cryogenic helium, velocity fluctuations      268—269
 Cryogenic helium, vortex-coupled superfluidity and Cryogenic helium, superfluid      260—265
 Cryogenic helium, vorticity measurements      269—270
 Cryogenic helium, wall stress gauges      266—267
 Daily, J. W.      32 33 83
 Dalle — Vedove, W.      197 235
 Damage, mechanics      290—291
 Damage, stresses in damaged continuum      340—346
 Damage, tensorial generalizations of creep law including      303—306
 Damage, tensors      294 295 331—340
 Darrigo, R.      181 231
 Das, P. K      286 363
 Dauby, P. C.      203 229
 Dauz
  re, C.      168 230 Davis, S. H.      170 179 230 234
 de Boer, P. C. T      179 194 230
 de Vries, G.      5 32 41 43 84 212 214 232
 Deformation gradient      281
 Deissler, R. J.      201 234
 Demkhin, E. A.      214 229
 Denardo, B.      76 83
 Depassier, M. C.      182 183 213 214 227 228 230
 Depth-mean velocity base      16—18
 DeWaele, A. T. A.      262 272
 Dewost, Ph      187 229
 Dispersive effects on run-u      196
 Donnelly, R. J.      241 242 245 252 255 256 257 258 260 262 263 265 266 268 270 272 273 275 276
 Drazin, P. G.      170 212 215 230
 Drucker — Prager criterion      315
 Duh, J. C      201 234
 E
  tv  s number      175 Eckart, C      101 157 164
 Eckert, K.      203 230
 Edge waves on sloping plane beach      106
 Edward, G. H      293 362
 Eigenvalues      104—106 108
 El — Magd, E.      289 361
 Elastic behavior, nonlinear constitutive equations for      281—284
 Elastic potential theory      283
 Elastic-plastic transition      306—308
 Elphick, C.      214 230
 Emsellem, V.      269 273
 Ertekin, R. C.      5 39 67 83
 Estevez, P. G.      214 230
 Euclidean space      279 280
 Euler equations      7 42 67 Lagrangian
 EULERian finite strain tensor      282
 Evans, H. E.      293 362
 Evans, R. W      302 303 362
 Evolution equation      354
 Faltinsen      23 84
 Faraday      76 84
 Faraday resonance      76—78
 Feir, J. E.      30 82
 Fick diffusion equation      171 177
 Fisdon, W.      268 276
 Fitzgerald, J. E.      299 362
 Forced Korteweg-de Vries (fKdV) equation      67 71
 Fourier equation      171 180
 Fourier synthesis      128 157
 Fourier — Chebyshev collocation method      92
 Fredholm’s integral equations      22
 Free surface kinematic condition      9
 Free-surface velocity base      15—16
 Frequency dispersion relation      29
 Friedrichs, K. O.      42 84 215 229
 Friis, H. A.      67 84
 Frisch, U      253 273
 Frobenius’s theory      99 136—137 157
 Froude number      3 63 66 67 69 75 242 259
 Fujinawa, K.      174 231
 Fully nonlinear fully dispersive (FNFD) waves      139
 Fully nonlinear fully dispersive (FNFD) waves, bottom velocity base      14—15
 Fully nonlinear fully dispersive (FNFD) waves, boundary integral closure      20—23
 Fully nonlinear fully dispersive (FNFD) waves, depth-mean velocity base      16—18
 Fully nonlinear fully dispersive (FNFD) waves, equations for      7—9
 Fully nonlinear fully dispersive (FNFD) waves, free-surface velocity base      15—16
 Fully nonlinear fully dispersive (FNFD) waves, intermediate-depth base      18—20
 Fully nonlinear fully dispersive (FNFD) waves, modeling, in water of uniform depth      23— 26
 Fully nonlinear fully dispersive (FNFD) waves, wave models      36—40
 Funada      201 203 204 230
 Galileo number      176 177 180 182 184 188 191 194 201 209 216
 Gallez, D.      201 202 236
 Ganczarski, A.      255 363
 Garazo, A. N      183 212 213 230 237
 Garcia — Ybarra, P. L.      181 183 188 194 195 197 207 214 229 230 237
 Gardner, P. L.      213 216 230
 Generalized Boussinesq model      62—63 95 135 139 142—147
 Generalized channel Boussinesq model      78
 Geometric wave approximation      113 135
 Georis, Ph      201 230
 Gershuni, G. Z.      180 186 187 230
 Ghazali, A.      92 165
 Gilev, A. Yu      189 230
 Gjevik, B.      92 164
 Goel, R. P.      292 362
 Goldenfeld, N.      253 273
 Golovin, A. A.      203 204 205 231
 Gong, L.      71 84
 
 | 
 |  |  |  | Реклама |  |  |  |  |  |