Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
van der Giessen E., Wu Theodore Y.-T. — Advances in Applied Mechanics, Volume 37
van der Giessen E., Wu Theodore Y.-T. — Advances in Applied Mechanics, Volume 37



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Advances in Applied Mechanics, Volume 37

Авторы: van der Giessen E., Wu Theodore Y.-T.

Аннотация:

This highly acclaimed series provides survey articles on the present state and future direction of research in important branches of applied solid and fluid mechanics.
Mechanics is defined as a branch of physics that focuses on motion and on the reaction of physical systems to internal and external forces.


Язык: en

Рубрика: Физика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 1 edition

Год издания: 2000

Количество страниц: 378

Добавлена в каталог: 31.10.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Aarts, R. G.      262 272
Abramowitz      102 107 109 164
Acrivos, A.      177 180 188 192 208 228 231 237
Agnon, Y.      18 82
Airy’s model      37 119 158
Akylas, T. R.      67 82
Alfaro      214 227
Allirot, D.      286 359
Andrade, E. N. da Costa      287 359
Anisimowicz      289 363
Antonia, R. A.      253 275
Apparent vorticity      40
Ashby, M. F.      293 362
Ashkenazi, S.      241 272
Aspe, H.      214 227
Astarita, G.      279 359
Asymptotic expansion of beach-wave function and the ray theory      110—116
Asymptotic reductive perturbation method      6
Avula, X. J. R.      279 359
B$\acute{e}$nard convection, Boussinesq approximation and surface deformation      179—183
B$\acute{e}$nard convection, conclusions      227
B$\acute{e}$nard convection, generalizations of classical theories      183—202
B$\acute{e}$nard convection, historical research      168—171
B$\acute{e}$nard convection, nonlinear waves and dissipative solitons      212—226
B$\acute{e}$nard convection, recent results on patterned convection      202—205
B$\acute{e}$nard convection, summary of results and limitations of classical theories      171—178
B$\acute{e}$nard convection, surface and internal waves and boundary- layer effects      205—212
B$\acute{e}$zier-splines, cubic      355
B$\acute{e}{$nard, H.      168 228
Badratinova, L. G.      204 227
Bailleux, R.      203 234
Bale, D. S.      51 54 57 83
Banijamali, B.      18 85
Bankoff, G.      170 234
Bar, D.      214 228
Baransky, Y.      69 70 83
Barenblatt, G. L.      253 272
Barenghi, C. F.      262 263 272
Batchelor, G. K.      254 272
Bathymetry      7 95 96
Bauer, G. H      262 263 272
Bauschinger phenomenon      314
Bazin, H.      215 222 228
Beach-wave function      136
Beach-wave function, asymptotic expansion of      110—116
Beach-wave function, defined      94 98
Beale, J.      23 82
Behringer, R. P.      245 274
Belin, F      269 276
Benguria, R. D.      182 183 228
Benjamin, T. B.      30 76 82 213 228
Benney, D. J.      49 82
Bensimon, D.      214 232
Berg, J. C.      174 177 188 228 234
Bernoulli equation      20
Bessel function      103 109
Bestehorn      203 205 228 230 236
Betten, J.      279—290 292—296 298 299 303 304 306 309 311—314 316 318 319 323—328 346—355 357 359 360 361 363 364
Bidirectional long-wave model      48—51
Bidirectional long-wave model for normal run-up      116—118
Bielert, F.      268 272 276
Biggerstaff, M. I.      174 232
Binary head-on collisions of bidirectional solitons      51—54
Binary overtaking collisions of unidirectional solitons      54—57
Biot number      172 174 204 205
Birikh, R. V.      188 201 228
Bisch, P.      197 201 231 235
Block, M. J.      168 170 194 227 228
Bodner, S. R.      290 361
Boehler, J. P.      280 286 313 317 359 361
Bolgiano, R.      258 272
Bond number, diverging static      180
Bond number, dynamic      177 209 220
Bond number, static      175 191 192
Bormann      286 360 361
Bose, A.      188 237
Bottom velocity base      14—15
Bouasse, H.      215 222 228
Boudart      177 228
Boundary integral closure      20—23
Boundary integral equation (BIE)      22—23
Boundary integral equation method (BIEM)      92
Boussinesq — Oberbeck approximation      171
Boussinesq — Oberbeck approximation, and surface deformation      179—183
Boussinesq, J.      5 16 41 82 212 214 216 228
Boussinesq’s two-equation model      31 33
Boussinesq’s two-equation model, 3D      212
Boussinesq’s two-equation model, generalized channel      78
Boussinesq’s two-equation model, generalized model      62—63 95 135 139 142—147
Bragard, J.      202 203 213 228
Breitbach, G.      346 351 361
Brian, P.      177 228
Briggs, M. J.      93 164
Briskman, V. A.      201 228
Britcher, C. P.      258 266 272 273
Brocchini      91 164
Brown, S. G. R.      302 303 361
Brunt — V$\ddot{a}$is$\ddot{a}$l$\ddot{a}$ frequency      192 209 211
Bushnell, D.      248 250 273
Busse, F. H.      170 180 186 187 203 229 235
Butters      287 360 361
Byatt — Smith, J. G. B.      51 82
Camassa, R.      5 39 40 66 69 70 71 72 75 83
Cardin, Ph      187 229
Carneiro, G.      181 234
Carrier, G. F.      91 101 122 138—141 164
Casciola      67 83
Castaing, B.      252 257 268 273
Castellanos, A.      229
Castillo, J. L.      214 229 230 237
Cauchy stress tensor      288 290 294 341 346
Cauchy — Green tensor      281 282
Cauchy’s contour integral formula      20—21
Center-of-mass (CM) frame      59—60
Cerisier, P.      203 229
Chabaud, B.      252 257 268 273
Chaboche, J. L      290 361
Chan, R. K. — C.      51 83
Chandrasekhar, S.      170 229
Chang, F. — P.      182 229
Chang, H. — C.      214 229
Chang, J. — H.      67 83 86
Chang, K. — T.      182 229
Chang, P.      78 83
Channel shape effects on wave propagation and generation      78—80
Channel shape factor      79
Chappelear, J. E.      41 45 83
Char, M. I.      181 229
Chaussy, J.      252 257 266 273
Chen, L. — Y.      177 229
Chen, X.      67 78 83
Chernyakov, A. L.      183 188 189 192 194 195 208 233
Chevanne, X.      252 257 266 273
Chiang, K. T      181 182 229
Chill a, F.      252 257 268 273
Cho, Y. — S.      93 164
Choi, H. S.      19 67 85
Choi, W.      5 39 40 67 83
Chorin, A. J.      253 272
Chow, C. L.      355 361
Christov, C. I.      204 205 213 214 216 222 229 234 235 237
Chrzanowski      290 292 361 362
Chu, C. K.      69 70 83
Chu, X. — L.      177 195 197 198 207 208 212 215 229 231 233 237
Chwang, A. T      51 52 67 88
Clark, A., Jr      3 85
Classical flow rule      288
Classical theory of plasticity      286
Cloot, A.      202 229
Coastal hydrodynamics      see Wave run-up
Cokelet, E. D.      23 85
Cole, J. D.      3 83 213 229
Cole, S. L      67 83
Colinet, P      192 203 208 209 210 212 213 214 216 220 221 222 229 233 235
Condition of compatibility      289
Confluent hypergeometric function      102 112
Constantin, P.      253 273
Constitutive equations      278 353
Constitutive equations, interpolation methods for tensor functions      297—299
Constitutive equations, material tensors of rank four and      313— 315
Constitutive equations, polynomial representation of tensor functions      296—297
Continuity tensors      331—340
Continuum mechanics      see Tensor functions in continuum mechanics
Cooker, M. J.      51 54 57 83
Copson, E.      101 164
Couette flow      200
Courant, R.      215 229
Craik, A. D. D.      77 83
Creep behavior, nonlinear constitutive equations for      287—296
Creep law, Norton — Bailey      288
Creep law, Norton’s      299—303
Creep law, Norton’s, including damage      303—306
Creep potential hypothesis      288 289
Creep potential theory      287
Croquette, V.      214 232
Cryogenic helium, advances of, as a test fluid      240—241
Cryogenic helium, advantages of      261
Cryogenic helium, aerodynamic forces      266
Cryogenic helium, aerospace and navy applications      247
Cryogenic helium, conclusions      271—272
Cryogenic helium, differential pressure      266
Cryogenic helium, disadvantages of      261—262
Cryogenic helium, flow visualization      267—268
Cryogenic helium, helium flow tunnel      258
Cryogenic helium, high — Reynolds number turbulence, basic problems in      251—254
Cryogenic helium, in geophysical flows      246
Cryogenic helium, in solar convection      246
Cryogenic helium, large-scale facilities, examples of      255
Cryogenic helium, limitations of      270—271
Cryogenic helium, mean flow velocity      265
Cryogenic helium, mean temperature and its gradient      265 266
Cryogenic helium, model testing and difficulties with extrapolation      248—250
Cryogenic helium, properties of      243—245
Cryogenic helium, questions about      241
Cryogenic helium, reasons for research on ultra-high parameter values      247—254
Cryogenic helium, refrigeration applications      255—256
Cryogenic helium, second sound      245
Cryogenic helium, temperature fluctuations      268
Cryogenic helium, thermal convection experiment      257—258
Cryogenic helium, tow tanks using liquid      259—260
Cryogenic helium, turbulence, summary of instrumentation development for      265—270
Cryogenic helium, velocity fluctuations      268—269
Cryogenic helium, vortex-coupled superfluidity and Cryogenic helium, superfluid      260—265
Cryogenic helium, vorticity measurements      269—270
Cryogenic helium, wall stress gauges      266—267
Daily, J. W.      32 33 83
Dalle — Vedove, W.      197 235
Damage, mechanics      290—291
Damage, stresses in damaged continuum      340—346
Damage, tensorial generalizations of creep law including      303—306
Damage, tensors      294 295 331—340
Darrigo, R.      181 231
Das, P. K      286 363
Dauby, P. C.      203 229
Dauz$\grave{e}$re, C.      168 230
Davis, S. H.      170 179 230 234
de Boer, P. C. T      179 194 230
de Vries, G.      5 32 41 43 84 212 214 232
Deformation gradient      281
Deissler, R. J.      201 234
Demkhin, E. A.      214 229
Denardo, B.      76 83
Depassier, M. C.      182 183 213 214 227 228 230
Depth-mean velocity base      16—18
DeWaele, A. T. A.      262 272
Dewost, Ph      187 229
Dispersive effects on run-u      196
Donnelly, R. J.      241 242 245 252 255 256 257 258 260 262 263 265 266 268 270 272 273 275 276
Drazin, P. G.      170 212 215 230
Drucker — Prager criterion      315
Duh, J. C      201 234
E$\ddot{o}$tv$\ddotr{o}$s number      175
Eckart, C      101 157 164
Eckert, K.      203 230
Edge waves on sloping plane beach      106
Edward, G. H      293 362
Eigenvalues      104—106 108
El — Magd, E.      289 361
Elastic behavior, nonlinear constitutive equations for      281—284
Elastic potential theory      283
Elastic-plastic transition      306—308
Elphick, C.      214 230
Emsellem, V.      269 273
Ertekin, R. C.      5 39 67 83
Estevez, P. G.      214 230
Euclidean space      279 280
Euler equations      7 42 67 Lagrangian
EULERian finite strain tensor      282
Evans, H. E.      293 362
Evans, R. W      302 303 362
Evolution equation      354
Faltinsen      23 84
Faraday      76 84
Faraday resonance      76—78
Feir, J. E.      30 82
Fick diffusion equation      171 177
Fisdon, W.      268 276
Fitzgerald, J. E.      299 362
Forced Korteweg-de Vries (fKdV) equation      67 71
Fourier equation      171 180
Fourier synthesis      128 157
Fourier — Chebyshev collocation method      92
Fredholm’s integral equations      22
Free surface kinematic condition      9
Free-surface velocity base      15—16
Frequency dispersion relation      29
Friedrichs, K. O.      42 84 215 229
Friis, H. A.      67 84
Frisch, U      253 273
Frobenius’s theory      99 136—137 157
Froude number      3 63 66 67 69 75 242 259
Fujinawa, K.      174 231
Fully nonlinear fully dispersive (FNFD) waves      139
Fully nonlinear fully dispersive (FNFD) waves, bottom velocity base      14—15
Fully nonlinear fully dispersive (FNFD) waves, boundary integral closure      20—23
Fully nonlinear fully dispersive (FNFD) waves, depth-mean velocity base      16—18
Fully nonlinear fully dispersive (FNFD) waves, equations for      7—9
Fully nonlinear fully dispersive (FNFD) waves, free-surface velocity base      15—16
Fully nonlinear fully dispersive (FNFD) waves, intermediate-depth base      18—20
Fully nonlinear fully dispersive (FNFD) waves, modeling, in water of uniform depth      23— 26
Fully nonlinear fully dispersive (FNFD) waves, wave models      36—40
Funada      201 203 204 230
Galileo number      176 177 180 182 184 188 191 194 201 209 216
Gallez, D.      201 202 236
Ganczarski, A.      255 363
Garazo, A. N      183 212 213 230 237
Garcia — Ybarra, P. L.      181 183 188 194 195 197 207 214 229 230 237
Gardner, P. L.      213 216 230
Generalized Boussinesq model      62—63 95 135 139 142—147
Generalized channel Boussinesq model      78
Geometric wave approximation      113 135
Georis, Ph      201 230
Gershuni, G. Z.      180 186 187 230
Ghazali, A.      92 165
Gilev, A. Yu      189 230
Gjevik, B.      92 164
Goel, R. P.      292 362
Goldenfeld, N.      253 273
Golovin, A. A.      203 204 205 231
Gong, L.      71 84
1 2 3 4
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте