| 
		        
			        |  |  
			        |  |  
					| Авторизация |  
					|  |  
			        |  |  
			        | Поиск по указателям |  
			        | 
 |  
			        |  |  
			        |  |  
			        |  |  
                    |  |  
			        |  |  
			        |  |  |  | 
		|  |  
                    | van der Giessen E., Wu Theodore Y.-T. — Advances in Applied Mechanics, Volume 37 |  
                    |  |  
			        |  |  
                    | Предметный указатель |  
                    | | Pereira, J. G.      182 183 232 Periodic waves, dispersive effects on Carrier — Greenspan’s solution for      138 141
 Periodical bifurcating regime      75
 Perrin, B.      266 275
 Petviashvili, V. I.      80 84 212
 Pfaff, S.      174 233
 Phillips, A.      286 363
 Phillips, O. M      253 274
 Piechna, J.      268 276
 Pismen, L.      203 204 205 231 234
 Plastic behavior, nonlinear constitutive equations for      284—287
 Plastic potential theory      286
 Plastic prestrain      350—351
 Polar decomposition theorem      281
 Polynomial representation of tensor functions      296—297 318—323
 Pomeau, Y      170 179 209 213 234
 Ponter, A. R. S.      292 362
 Pontes, J.      205 234 235
 Porubov, A. V.      182 214 235
 Power, H      51 52 86
 Poynting effect      283 290
 Prakash, A.      201 235
 Prandtl number      172 182 192 194 198 200 202 204—205 216 240—241 245
 Prandtl, L.      37 86
 Principle of material frame indifference/objectivity      279
 Procaccia, I.      251 253 273 274
 Pumir, A.      214 232
 Putterman, S.      76 83 85
 Qu, W      25 26 46 47 86
 Quack, H. H.      256 275
 Quarter-plane problem      69—70
 Rabotnov, Y. N.      287 291 292 294 303 344 363
 Raichlen, F.      91 92 93 165
 Ramberg — Osgood relation      308—309 357 359
 Ramberg, W.      308 309 357 359 363
 Rasenat, S.      180 186 187 235
 Ray theory      110—116 158
 Rayleigh number      174 181 182 186—187 188—190 200 240-241
 Rayleigh number, in aerospace and navy applications      247
 Rayleigh number, in geophysical flows      246
 Rayleigh number, in solar convection      246
 Rayleigh — Taylor instability      186 187 191 192—193
 Rayleigh, Lord      5 41 76 86 168 212 235
 Recurrence formula      100 137
 Rednikov, A. Ye      192 208 209 210 212 213 214 216 220 221 222 233 235 237
 Refrigeration applications      255—256
 Regev, O.      214 230
 Regnier, V. C      203 234
 Rehberg, I      180 186 187 235
 Reichenbach, J.      188 190 192 208 235
 Reid, W. H.      170 230
 Renardy      187 235
 Renardy, Y.      187 188 235
 Reynolds number      172 240—241
 Reynolds number, in aerospace and navy applications      247
 Reynolds number, in geophysical flows      246
 Reynolds number, in solar convection      246
 Reynolds number, turbulence, basic problems in high      251— 254
 Reynolds, W. C      183 184 186 188 200 238
 Rice, J. R.      289 363
 Richardson number      246
 Richter, H.      214 232
 Richtmyer two-step Lax — Wendroff scheme      121
 Riecke, H      204 231
 Riedel, H      293 294 363
 Rivlin, R. S.      285 363
 Roberts, P. H.      245 275
 Robertson, C. R.      180 231
 Rorschach, H. E., Jr      263 274
 Rosenau, Ph      204 214 234
 Roshko, A.      252 275
 Roux, B      201 233
 Roz
  , C.      181 231 Ruckenstein, E.      201 202 233
 Rudakov, R. N.      188 228
 Rudnick, J.      76 87
 Rusas, P. O.      67 84
 Russell, J. S.      2 5 37 62 67 86 93 215 216 222 235
 Ryazantsev, Yu. S.      213 214 235
 Saddoughi, S.      252 275
 Safar, J      204 231
 Saitoh, R.      290 363
 Salan, J      203 234
 Samsonov, A.      182 214 235
 Samuels, D. C      262 263 272
 Sanfeld, A.      175 197 201 202 231 235 236
 Sanomura, Y.      290 363
 Santiago — Rosanne      221 224 235
 Sarnia, G. S. R.      200 235
 Sawczuk, A.      289 290 313 317 361 363
 Scalar-valued tensor function      284—285
 Scanlon, J. W.      179 194 202 235
 Sch
  ffer, H. A.      18 85 86 Schatz, M. F.      177 191 193 202 204 236 237
 Schell      204 231
 Schember, H. R.      67 86
 Schlichting, H.      251 275
 Schmidt number      172
 Schroedinger equation      73
 Schwartz, P.      188 233
 Schwarz, K. W.      262 275
 Schwarz’s principle of symmetry      24
 Scriven, L. E.      168 174 175 183 187 188 190 192 194 195 197 202 208 227 236
 Second sound      245
 Sedov, L. I.      297 363
 Segel, L. A.      179 194 202 230 235
 Sh
  ffer, H. A.      18 85 86 Shallow-water equations      119 157—158
 Sharma, S. D.      67 83
 Shen, S. S.      71 78 84 86
 Shi, A.      80 86
 Shkadov, V.      214 236
 Shraiman, B.      253 275
 Shtilman, L.      205 236
 Shuto, N      78 86
 Sibul, O. J.      66 84
 Siggia, E      253 275
 Simanovsky, I. B      188 198 201 205 230 234 236
 Simplified theory based on mapped stress tensors      346—359
 Sinai, Y. G.      253 275
 Sivashinsky, G.      204 205 214 235 236
 Sklepus, S.      285 361
 Skrbek, L.      265 275
 Skrzypek, J.      355 363
 Slavchev, S.      177 232
 Sloping plane beaches, normal run-up      102—103
 Sloping plane beaches, oblique run-up      101—102
 Sloping plane beaches, periodic run-up on      122—125
 Sloping plane beaches, water run-down on      125—126
 Smelt, R      242 275
 Smith, J.      269 276
 Smith, K. A.      175 176 181 182 183 184 191 192 194 202 204 236
 Smith, M. R.      263 264 270 275
 Smits, A. J.      241 252 275 276
 Smyth, N. F.      66 67 84
 Snyder, H. A.      266 274
 Sobotka, Z.      297 363
 Solitary waves      41—47
 Solitary waves, nonlinear effects on run-up of solitary waves on parabolic beaches      127—134
 Solitary waves, run-up of, on an arbitrary beach      147—153
 Soliton generation by boundary forcing      69—71
 Soliton generation by resonant forcing      62—78
 Soliton generation in Faraday resonance      76—78
 Soliton generation numerical and experimental discoveries      62—69
 Soliton generation stability and bifurcation of      71—76
 Solitons      3 5
 Solitons, binary head-on collisions of bidirectional      51—54
 Solitons, binary overtaking collisions of unidirectional      54—57
 Solitons, mass and energy transfer between overtaking      57—61
 Solitons, nonlinear waves and dissipative      212—226
 
 | Sondericker, J. H.      256 275 Sorensen, O. R      18 19 82 85
 Spencer, A. J. M      285 286 363 364
 Spherical tensor      340
 Spiegel, E. A.      214 230
 Spielvogel, L. Q.      91 126 164
 Sreenivasan, K. R.      241 242 253 254 265 266 273 275
 Stable supercritical regime      75
 Stalp, S. R.      263 264 265 270 275 276
 Stamm, G.      268 272 276
 Stegun, L. A.      102 107 109 164
 Steinberg, V.      241 272
 Steinchen, A      197 201 202 235 236
 Stephan, S. C.      32 33 83
 Sternling, C. V.      168 174 175 183 187 188 190 192 194 195 197 202 208 227 236
 Stewart, R. W.      252 273
 Stokes gravity waves      26—30
 Stokes, G. G.      26 86
 Strain measure      282
 Strain-energy function      283
 Strain-hardening hypothesis      287
 Street, R. L.      51 83
 Strength-differential effect      314
 Su, C. H.      51 54 57 86
 Subramanya, R.      18 87 92 164
 Sun, M. G.      66 86
 Surface deformation      176
 Surface deformation, Boussinesq approximation and      179—183
 Surface-projected momentum equation      9
 Suzuki, Y.      174 177 231
 Svendsen, I. A.      92 164
 Swanson      265 266 276
 Swift, J. B.      177 191 193 202 204 236 237
 Swinney, H. D.      177 191 193 202 204 236 237
 Swinney, H. L      205 231
 Synolakis, C. E.      91 92 160 163 164 165
 Tabeling, P.      263 269 273 274 276
 Takashima, M      181 183 188 190—192 194 195 208 236
 Tanford, Ch      170 236
 Tang, C. J.      67 86
 Taylor — Couette flow      258 266 268
 Temperville, A.      52 86
 Teng, M. H      32 78 79 80 86 106 144 164
 Teng, Z.      23 84
 Tennekes, H.      253 275
 Tensor function theory      287
 Tensor functions in continuum mechanics, applications      278
 Tensor functions in continuum mechanics, constitutive equations      278
 Tensor functions in continuum mechanics, continuity tensors      331—340
 Tensor functions in continuum mechanics, damage tensors      294 295 331—340
 Tensor functions in continuum mechanics, ideal material response      278
 Tensor functions in continuum mechanics, interpolation methods for      297—299
 Tensor functions in continuum mechanics, material tensors of rank two      289
 Tensor functions in continuum mechanics, polynomial representation of      296—297
 Tensor functions in continuum mechanics, simplified theory based on mapped stress tensors      346—359
 Tensor functions in continuum mechanics, stresses in damaged      340—346
 Tensor functions, nonlinear constitutive equations, for creep behavior      287—296
 Tensor functions, nonlinear constitutive equations, for elastic behavior      281—284
 Tensor functions, nonlinear constitutive equations, for plastic behavior      284—287
 Tensor generators      325—326
 Tensor-valued function      288
 Tensorial generalizations, of creep law including damage      303—306
 Tensorial generalizations, of elastic-plastic transition      306—308
 Tensorial generalizations, of Norton’s creep law      299—303
 Tensorial generalizations, of Ramberg Osgood relation      308—309
 Tensors of rank four, material      289—313
 Tensors of rank four, material, characteristic polynomial for fourth-order tensor      318—323
 Tensors of rank four, material, combinatorial method      324—327
 Tensors of rank four, material, formulations of constitutive equations and yield criteria      313—315
 Tensors of rank four, material, incompressibility and volume change      315—318
 Tensors of rank four, material, Lagrange multiplier method      323—324
 Tensors of rank four, material, simplified representations      327—330
 Thermal convection experiment      257—258
 Thermoelasticity      283
 Thess, A.      181 203 230 234 236 238
 Thomae, A.      252 257 273
 Three-dimensional waves, boundary integral equation      22—23
 Threlfall, C.      257 275
 Tisza — Landau two-fluid equations      245
 Toh, S.      214 232 236
 Topper, J.      214 236
 Trampczynski, W. A.      289 292 301 362 363
 Trifonov, Yu Ya      214 236
 Tsai, W.      23 87
 Tsuzuki      214 232
 Tsvelodub, O. Yu      214 236
 Tuba Ozkan — Haller, H.      92 164
 Tuck, E. O.      91 125 164
 Turbulence basic problems in high — Reynolds number      251—254
 Turbulence summary of instrumentation development for helium      265—270
 Two-dimensional waves, contour closure      20—22
 Uhlenbeck, G. E.      214 232
 Uniform channel analogy theorem      79
 Ursell, F.      76 82 213 216 236
 van der Geest      216 232
 Van Hook, S.      177 191 193 204 236 237
 Van Lamsweerde — Gallez, D.      197 235
 Van Sciver, S. W.      263 265 275 276
 Vector functions      see Tensor functions in continuum mechanics
 Veeramony, J.      92 164
 Veeravalli, S.      252 275
 Velarde, M. G.      179 181 183 188 194 195 197 198 201 203 204 205 207 208 212 213 214 215 216 220 221 222 228 229 230 231 233 234 235 237 238
 Vengayil, P.      78 84
 Vibro creep      299
 Vidal, A.      192 208 237
 Vign
  s — Adler      197 201 221 224 231 235 Vinen, W. F      262 263 275
 Virtual vorticity      40
 Volume change      315—318
 Vortex-coupled superfluidity (VCS), superfluid helium and      260—265
 Vrebalovich      252 274
 Wahal, S.      188 237
 Waldheim, W      221 222 233 237
 Walstrom, P. L.      263 276
 Wang, B.      78 87
 Wang, Z. I.      269 273
 Waniewski      289 290 346 348 349 350 351 361 363
 Water waves, three primary parameters for modeling      3
 Watts, J. W.      92 164
 Wave run-up, comparison of theories      159—164
 Wave run-up, conclusions      157—159
 Wave run-up, dispersive effects on Carrier — Greenspan’s solution for periodic waves      138—141
 Wave run-up, dispersive effects on linear dispersive model      135—138
 Wave run-up, experimental studies on      92—93
 Wave run-up, historical studies on      91
 Wave run-up, Lagrangian — Eulerian numerical method for computing, nonlinear shallow-water model      118—119
 Wave run-up, Lagrangian — Eulerian numerical method for computing, numerical scheme for fixed-region computation      120—122
 Wave run-up, Lagrangian — Eulerian numerical method for computing, periodic run-up on sloping plane beaches example      122—125
 Wave run-up, Lagrangian — Eulerian numerical method for computing, summary of      94
 Wave run-up, Lagrangian — Eulerian numerical method for computing, water run-down on sloping plane beaches examples      125—126
 Wave run-up, Lagrangian — Eulerian numerical method for computing, waterline equations      120
 Wave run-up, linear nondispersive theory of asymptotic expansion of beach-wave, beach-wave function      94 98
 Wave run-up, linear nondispersive theory of asymptotic expansion of beach-wave, bidirectional model for normal      116—118
 Wave run-up, linear nondispersive theory of asymptotic expansion of beach-wave, edge waves on sloping plane beach      103 106
 Wave run-up, linear nondispersive theory of asymptotic expansion of beach-wave, function and the ray theory      110—116
 Wave run-up, linear nondispersive theory of asymptotic expansion of beach-wave, normal run-up on a family of beaches      109
 Wave run-up, linear nondispersive theory of asymptotic expansion of beach-wave, normal run-up on parabolic beach      107 109
 Wave run-up, linear nondispersive theory of asymptotic expansion of beach-wave, normal run-up on sloping plane beach      102—103
 Wave run-up, linear nondispersive theory of asymptotic expansion of beach-wave, oblique run-up on sloping plane beach      101—102
 Wave run-up, linear nondispersive theory of asymptotic expansion of beach-wave, summary of      94
 Wave run-up, nonlinear effects      94
 Wave run-up, numerical solution of, by gB model      142 147
 Wave run-up, numerical studies on      91—92
 Wave run-up, of solitary waves on an arbitrary beach      147—152
 Wave run-up, relative      100
 Wave run-up, summary of      94
 Wave run-up, wave-induced longshore current      153—157
 Weakly nonlinear fully dispersive (WNFD), wave theory, Stokes gravity waves Weakly nonlinear fully dispersive (WNFD), in arbitrary depth      26—30
 Weakly nonlinear weakly dispersive (WNWD) wave models, equations      31—35
 Weakly nonlinear weakly dispersive (WNWD) wave models, Hamiltonian structures      35—36
 
 | 
 |  |  |  | Реклама |  |  |  |  |  |