Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
van der Giessen E., Wu Theodore Y.-T. — Advances in Applied Mechanics, Volume 37
van der Giessen E., Wu Theodore Y.-T. — Advances in Applied Mechanics, Volume 37



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Advances in Applied Mechanics, Volume 37

Авторы: van der Giessen E., Wu Theodore Y.-T.

Аннотация:

This highly acclaimed series provides survey articles on the present state and future direction of research in important branches of applied solid and fluid mechanics.
Mechanics is defined as a branch of physics that focuses on motion and on the reaction of physical systems to internal and external forces.


Язык: en

Рубрика: Физика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 1 edition

Год издания: 2000

Количество страниц: 378

Добавлена в каталог: 31.10.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Pereira, J. G.      182 183 232
Periodic waves, dispersive effects on Carrier — Greenspan’s solution for      138 141
Periodical bifurcating regime      75
Perrin, B.      266 275
Petviashvili, V. I.      80 84 212
Pfaff, S.      174 233
Phillips, A.      286 363
Phillips, O. M      253 274
Piechna, J.      268 276
Pismen, L.      203 204 205 231 234
Plastic behavior, nonlinear constitutive equations for      284—287
Plastic potential theory      286
Plastic prestrain      350—351
Polar decomposition theorem      281
Polynomial representation of tensor functions      296—297 318—323
Pomeau, Y      170 179 209 213 234
Ponter, A. R. S.      292 362
Pontes, J.      205 234 235
Porubov, A. V.      182 214 235
Power, H      51 52 86
Poynting effect      283 290
Prakash, A.      201 235
Prandtl number      172 182 192 194 198 200 202 204—205 216 240—241 245
Prandtl, L.      37 86
Principle of material frame indifference/objectivity      279
Procaccia, I.      251 253 273 274
Pumir, A.      214 232
Putterman, S.      76 83 85
Qu, W      25 26 46 47 86
Quack, H. H.      256 275
Quarter-plane problem      69—70
Rabotnov, Y. N.      287 291 292 294 303 344 363
Raichlen, F.      91 92 93 165
Ramberg — Osgood relation      308—309 357 359
Ramberg, W.      308 309 357 359 363
Rasenat, S.      180 186 187 235
Ray theory      110—116 158
Rayleigh number      174 181 182 186—187 188—190 200 240-241
Rayleigh number, in aerospace and navy applications      247
Rayleigh number, in geophysical flows      246
Rayleigh number, in solar convection      246
Rayleigh — Taylor instability      186 187 191 192—193
Rayleigh, Lord      5 41 76 86 168 212 235
Recurrence formula      100 137
Rednikov, A. Ye      192 208 209 210 212 213 214 216 220 221 222 233 235 237
Refrigeration applications      255—256
Regev, O.      214 230
Regnier, V. C      203 234
Rehberg, I      180 186 187 235
Reichenbach, J.      188 190 192 208 235
Reid, W. H.      170 230
Renardy      187 235
Renardy, Y.      187 188 235
Reynolds number      172 240—241
Reynolds number, in aerospace and navy applications      247
Reynolds number, in geophysical flows      246
Reynolds number, in solar convection      246
Reynolds number, turbulence, basic problems in high      251— 254
Reynolds, W. C      183 184 186 188 200 238
Rice, J. R.      289 363
Richardson number      246
Richter, H.      214 232
Richtmyer two-step Lax — Wendroff scheme      121
Riecke, H      204 231
Riedel, H      293 294 363
Rivlin, R. S.      285 363
Roberts, P. H.      245 275
Robertson, C. R.      180 231
Rorschach, H. E., Jr      263 274
Rosenau, Ph      204 214 234
Roshko, A.      252 275
Roux, B      201 233
Roz$\acute{e}$, C.      181 231
Ruckenstein, E.      201 202 233
Rudakov, R. N.      188 228
Rudnick, J.      76 87
Rusas, P. O.      67 84
Russell, J. S.      2 5 37 62 67 86 93 215 216 222 235
Ryazantsev, Yu. S.      213 214 235
Saddoughi, S.      252 275
Safar, J      204 231
Saitoh, R.      290 363
Salan, J      203 234
Samsonov, A.      182 214 235
Samuels, D. C      262 263 272
Sanfeld, A.      175 197 201 202 231 235 236
Sanomura, Y.      290 363
Santiago — Rosanne      221 224 235
Sarnia, G. S. R.      200 235
Sawczuk, A.      289 290 313 317 361 363
Scalar-valued tensor function      284—285
Scanlon, J. W.      179 194 202 235
Sch$\ddot{a}$ffer, H. A.      18 85 86
Schatz, M. F.      177 191 193 202 204 236 237
Schell      204 231
Schember, H. R.      67 86
Schlichting, H.      251 275
Schmidt number      172
Schroedinger equation      73
Schwartz, P.      188 233
Schwarz, K. W.      262 275
Schwarz’s principle of symmetry      24
Scriven, L. E.      168 174 175 183 187 188 190 192 194 195 197 202 208 227 236
Second sound      245
Sedov, L. I.      297 363
Segel, L. A.      179 194 202 230 235
Sh$\ddot{a}$ffer, H. A.      18 85 86
Shallow-water equations      119 157—158
Sharma, S. D.      67 83
Shen, S. S.      71 78 84 86
Shi, A.      80 86
Shkadov, V.      214 236
Shraiman, B.      253 275
Shtilman, L.      205 236
Shuto, N      78 86
Sibul, O. J.      66 84
Siggia, E      253 275
Simanovsky, I. B      188 198 201 205 230 234 236
Simplified theory based on mapped stress tensors      346—359
Sinai, Y. G.      253 275
Sivashinsky, G.      204 205 214 235 236
Sklepus, S.      285 361
Skrbek, L.      265 275
Skrzypek, J.      355 363
Slavchev, S.      177 232
Sloping plane beaches, normal run-up      102—103
Sloping plane beaches, oblique run-up      101—102
Sloping plane beaches, periodic run-up on      122—125
Sloping plane beaches, water run-down on      125—126
Smelt, R      242 275
Smith, J.      269 276
Smith, K. A.      175 176 181 182 183 184 191 192 194 202 204 236
Smith, M. R.      263 264 270 275
Smits, A. J.      241 252 275 276
Smyth, N. F.      66 67 84
Snyder, H. A.      266 274
Sobotka, Z.      297 363
Solitary waves      41—47
Solitary waves, nonlinear effects on run-up of solitary waves on parabolic beaches      127—134
Solitary waves, run-up of, on an arbitrary beach      147—153
Soliton generation by boundary forcing      69—71
Soliton generation by resonant forcing      62—78
Soliton generation in Faraday resonance      76—78
Soliton generation numerical and experimental discoveries      62—69
Soliton generation stability and bifurcation of      71—76
Solitons      3 5
Solitons, binary head-on collisions of bidirectional      51—54
Solitons, binary overtaking collisions of unidirectional      54—57
Solitons, mass and energy transfer between overtaking      57—61
Solitons, nonlinear waves and dissipative      212—226
Sondericker, J. H.      256 275
Sorensen, O. R      18 19 82 85
Spencer, A. J. M      285 286 363 364
Spherical tensor      340
Spiegel, E. A.      214 230
Spielvogel, L. Q.      91 126 164
Sreenivasan, K. R.      241 242 253 254 265 266 273 275
Stable supercritical regime      75
Stalp, S. R.      263 264 265 270 275 276
Stamm, G.      268 272 276
Stegun, L. A.      102 107 109 164
Steinberg, V.      241 272
Steinchen, A      197 201 202 235 236
Stephan, S. C.      32 33 83
Sternling, C. V.      168 174 175 183 187 188 190 192 194 195 197 202 208 227 236
Stewart, R. W.      252 273
Stokes gravity waves      26—30
Stokes, G. G.      26 86
Strain measure      282
Strain-energy function      283
Strain-hardening hypothesis      287
Street, R. L.      51 83
Strength-differential effect      314
Su, C. H.      51 54 57 86
Subramanya, R.      18 87 92 164
Sun, M. G.      66 86
Surface deformation      176
Surface deformation, Boussinesq approximation and      179—183
Surface-projected momentum equation      9
Suzuki, Y.      174 177 231
Svendsen, I. A.      92 164
Swanson      265 266 276
Swift, J. B.      177 191 193 202 204 236 237
Swinney, H. D.      177 191 193 202 204 236 237
Swinney, H. L      205 231
Synolakis, C. E.      91 92 160 163 164 165
Tabeling, P.      263 269 273 274 276
Takashima, M      181 183 188 190—192 194 195 208 236
Tanford, Ch      170 236
Tang, C. J.      67 86
Taylor — Couette flow      258 266 268
Temperville, A.      52 86
Teng, M. H      32 78 79 80 86 106 144 164
Teng, Z.      23 84
Tennekes, H.      253 275
Tensor function theory      287
Tensor functions in continuum mechanics, applications      278
Tensor functions in continuum mechanics, constitutive equations      278
Tensor functions in continuum mechanics, continuity tensors      331—340
Tensor functions in continuum mechanics, damage tensors      294 295 331—340
Tensor functions in continuum mechanics, ideal material response      278
Tensor functions in continuum mechanics, interpolation methods for      297—299
Tensor functions in continuum mechanics, material tensors of rank two      289
Tensor functions in continuum mechanics, polynomial representation of      296—297
Tensor functions in continuum mechanics, simplified theory based on mapped stress tensors      346—359
Tensor functions in continuum mechanics, stresses in damaged      340—346
Tensor functions, nonlinear constitutive equations, for creep behavior      287—296
Tensor functions, nonlinear constitutive equations, for elastic behavior      281—284
Tensor functions, nonlinear constitutive equations, for plastic behavior      284—287
Tensor generators      325—326
Tensor-valued function      288
Tensorial generalizations, of creep law including damage      303—306
Tensorial generalizations, of elastic-plastic transition      306—308
Tensorial generalizations, of Norton’s creep law      299—303
Tensorial generalizations, of Ramberg Osgood relation      308—309
Tensors of rank four, material      289—313
Tensors of rank four, material, characteristic polynomial for fourth-order tensor      318—323
Tensors of rank four, material, combinatorial method      324—327
Tensors of rank four, material, formulations of constitutive equations and yield criteria      313—315
Tensors of rank four, material, incompressibility and volume change      315—318
Tensors of rank four, material, Lagrange multiplier method      323—324
Tensors of rank four, material, simplified representations      327—330
Thermal convection experiment      257—258
Thermoelasticity      283
Thess, A.      181 203 230 234 236 238
Thomae, A.      252 257 273
Three-dimensional waves, boundary integral equation      22—23
Threlfall, C.      257 275
Tisza — Landau two-fluid equations      245
Toh, S.      214 232 236
Topper, J.      214 236
Trampczynski, W. A.      289 292 301 362 363
Trifonov, Yu Ya      214 236
Tsai, W.      23 87
Tsuzuki      214 232
Tsvelodub, O. Yu      214 236
Tuba Ozkan — Haller, H.      92 164
Tuck, E. O.      91 125 164
Turbulence basic problems in high — Reynolds number      251—254
Turbulence summary of instrumentation development for helium      265—270
Two-dimensional waves, contour closure      20—22
Uhlenbeck, G. E.      214 232
Uniform channel analogy theorem      79
Ursell, F.      76 82 213 216 236
van der Geest      216 232
Van Hook, S.      177 191 193 204 236 237
Van Lamsweerde — Gallez, D.      197 235
Van Sciver, S. W.      263 265 275 276
Vector functions      see Tensor functions in continuum mechanics
Veeramony, J.      92 164
Veeravalli, S.      252 275
Velarde, M. G.      179 181 183 188 194 195 197 198 201 203 204 205 207 208 212 213 214 215 216 220 221 222 228 229 230 231 233 234 235 237 238
Vengayil, P.      78 84
Vibro creep      299
Vidal, A.      192 208 237
Vign$\grave{e}$s — Adler      197 201 221 224 231 235
Vinen, W. F      262 263 275
Virtual vorticity      40
Volume change      315—318
Vortex-coupled superfluidity (VCS), superfluid helium and      260—265
Vrebalovich      252 274
Wahal, S.      188 237
Waldheim, W      221 222 233 237
Walstrom, P. L.      263 276
Wang, B.      78 87
Wang, Z. I.      269 273
Waniewski      289 290 346 348 349 350 351 361 363
Water waves, three primary parameters for modeling      3
Watts, J. W.      92 164
Wave run-up, comparison of theories      159—164
Wave run-up, conclusions      157—159
Wave run-up, dispersive effects on Carrier — Greenspan’s solution for periodic waves      138—141
Wave run-up, dispersive effects on linear dispersive model      135—138
Wave run-up, experimental studies on      92—93
Wave run-up, historical studies on      91
Wave run-up, Lagrangian — Eulerian numerical method for computing, nonlinear shallow-water model      118—119
Wave run-up, Lagrangian — Eulerian numerical method for computing, numerical scheme for fixed-region computation      120—122
Wave run-up, Lagrangian — Eulerian numerical method for computing, periodic run-up on sloping plane beaches example      122—125
Wave run-up, Lagrangian — Eulerian numerical method for computing, summary of      94
Wave run-up, Lagrangian — Eulerian numerical method for computing, water run-down on sloping plane beaches examples      125—126
Wave run-up, Lagrangian — Eulerian numerical method for computing, waterline equations      120
Wave run-up, linear nondispersive theory of asymptotic expansion of beach-wave, beach-wave function      94 98
Wave run-up, linear nondispersive theory of asymptotic expansion of beach-wave, bidirectional model for normal      116—118
Wave run-up, linear nondispersive theory of asymptotic expansion of beach-wave, edge waves on sloping plane beach      103 106
Wave run-up, linear nondispersive theory of asymptotic expansion of beach-wave, function and the ray theory      110—116
Wave run-up, linear nondispersive theory of asymptotic expansion of beach-wave, normal run-up on a family of beaches      109
Wave run-up, linear nondispersive theory of asymptotic expansion of beach-wave, normal run-up on parabolic beach      107 109
Wave run-up, linear nondispersive theory of asymptotic expansion of beach-wave, normal run-up on sloping plane beach      102—103
Wave run-up, linear nondispersive theory of asymptotic expansion of beach-wave, oblique run-up on sloping plane beach      101—102
Wave run-up, linear nondispersive theory of asymptotic expansion of beach-wave, summary of      94
Wave run-up, nonlinear effects      94
Wave run-up, numerical solution of, by gB model      142 147
Wave run-up, numerical studies on      91—92
Wave run-up, of solitary waves on an arbitrary beach      147—152
Wave run-up, relative      100
Wave run-up, summary of      94
Wave run-up, wave-induced longshore current      153—157
Weakly nonlinear fully dispersive (WNFD), wave theory, Stokes gravity waves Weakly nonlinear fully dispersive (WNFD), in arbitrary depth      26—30
Weakly nonlinear weakly dispersive (WNWD) wave models, equations      31—35
Weakly nonlinear weakly dispersive (WNWD) wave models, Hamiltonian structures      35—36
1 2 3 4
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте