Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Shafer G. — Probabilistic expert systems
Shafer G. — Probabilistic expert systems



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Probabilistic expert systems

Автор: Shafer G.

Аннотация:

Probabilistic Expert Systems emphasizes the basic computational principles that make probabilistic reasoning feasible in expert systems. The key to computation in these systems is the modularity of the probabilistic model. Shafer describes and compares the principal architectures for exploiting this modularity in the computation of prior and posterior probabilities. He also indicates how these similar yet different architectures apply to a wide variety of other problems of recursive computation in applied mathematics and operations research.
The field of probabilistic expert systems has continued to flourish since the author delivered his lectures on the topic in June 1992, but the understanding of join-tree architectures has remained missing from the literature. This monograph fills this void by providing an analysis of join-tree methods for the computation of prior and posterior probabilities in belief nets. These methods, pioneered in the mid to late 1980s, continue to be central to the theory and practice of probabilistic expert systems. In addition to purely probabilistic expert systems, join-tree methods are also used in expert systems based on Dempster–Shafer belief functions or on possibility measures. Variations are also used for computation in relational databases, in linear optimization, and in constraint satisfaction.
This book describes probabilistic expert systems in a more rigorous and focused way than existing literature, and provides an annotated bibliography that includes pointers to conferences and software. Also included are exercises that will help the reader begin to explore the problem of generalizing from probability to broader domains of recursive computation.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1987

Количество страниц: 91

Добавлена в каталог: 30.10.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Aalborg architecture      56
Aalborg formula      61
Audit evidence      29
Bayesian network      22
Bayesian statistics      66
Belief chain      25 33
Belief functions      15
Belief net      21
Bubble graph      27
categorical variables      13
Chain      25
Chain graph      30
COLLECT      64
Combination axiom      5
Computational cost      67
Computional cost      50
Conditional      5 18
conditional probabilities      5
Conditioning      10
Configuration      2
Constraint propagation      36
Construction chain      28
Construction sequence      19 54
Constructive interpretation of probability      9
Continuer      7 15 16 18 53
Dag      21
DAG, construction ordering      22
DAG, initial segment      23
density      3
Directed acyclic graph      21
Distribute      64
Domain      3
Dynamic programming      36
Elementary architecture      43
Expectation      12
Extended division      60
Factorization      35 54
Four-color problem      36
Frame      2
Gibbs sampling      66
Graphical model      22
head      5
Heuristics      37
Hidden Markov model      26 33
Independence      9
Information branch      43
Join graph      29
Join tree      35 39
Join tree, cover      43
Join tree, heuristics      37
Join tree, root      41
Junction tree      35
Kalman filter      16 67
Lattice      16
Lauritzen — Spiegelhalter architecture      50
Linear programming      15
Marginal      2 3 18
Markov chain      25
Markov-chain Monte Carlo      66
Mean field theory      66
Multivariate framework      2 14
Object-oriented computation      64
Out-marginal      16
Parallel computation      48
PARAMETER      13
Posterior probability      10
probability distribution      2
Probability distribution with given marginals      63
Probability distribution, algorithmic      13
Probability distribution, continuous      3
Probability distribution, discrete      2
Probability distribution, parametric      13
Probability distribution, posterior      10
Probability distribution, tabular      13
Recursive computation      5
Recursive dynamic programming      67
Relational database      35
Rules      63
Semigroup      16 33 68
SendMessage      64
Separator      45 56 62
Shafer — Shenoy architecture      45
Similarity network      31
Slice      6
State graph      25 33
Sufficient      9
Support      60
Systems of equations      15 36
tail      5
Transitivity axiom      5
Valuation network      30
Variable      2
Vision      66
zeros      58
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте