Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Stewart G.W. — Afternotes on Numerical Analysis
Stewart G.W. — Afternotes on Numerical Analysis



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Afternotes on Numerical Analysis

Автор: Stewart G.W.

Аннотация:

There are many textbooks to choose from when teaching an introductory numerical analysis course, but there is only one Afternotes on Numerical Analysis. This book presents the central ideas of modern numerical analysis in a vivid and straightforward fashion with a minimum of fuss and formality. Stewart designed this volume while teaching an upper-division course in introductory numerical analysis. To clarify what he was teaching, he wrote down each lecture immediately after it was given. The result reflects the wit, insight, and verbal craftmanship which are hallmarks of the author. Simple examples are used to introduce each topic, then the author quickly moves on to the discussion of important methods and techniques. With its rich mixture of graphs and code segments, the book provides insights and advice that help the reader avoid the many pitfalls in numerical computation that can easily trap an unwary beginner.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1987

Количество страниц: 210

Добавлена в каталог: 28.10.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Newton's method, retarded convergence      14—15 25
Newton's method, starting values      15
Nonlinear equations      4
Nonlinear equations, analytic solutions      4
Nonlinear equations, bracket for a root      5
Nonlinear equations, condition of roots      see "Condition" "Roots
Nonlinear equations, effects of rounding error      6
Nonlinear equations, errors in the function      37 40—42
Nonlinear equations, existence of solutions      4 5
Nonlinear equations, general observations      3—4
Nonlinear equations, hybrid of secant method and interval bisection      37—40
Nonlinear equations, interpolatory method      33
Nonlinear equations, interval bisection      qv
Nonlinear equations, Muller's method      qv
Nonlinear equations, multipoint method      qv
Nonlinear equations, Newton's method      qv
Nonlinear equations, polynomial equations      25
Nonlinear equations, quadratic formula      qv
Nonlinear equations, quasi-Newton method      4 17n 17 27
Nonlinear equations, root and zero contrasted      9
Nonlinear equations, secant method      qv
Nonlinear equations, successive substitutions method      qv
Nonlinear equations, two-point method      qv
Nonlinear equations, uniqueness of solutions      4
Nonsingular matrix      78 90
Nonsingular matrix, perturbation of      117
Norm and orthogonal matrices      127
Norm of a diagonal matrix      127
Norm of a rank-one matrix      127
Norm, column-sum norm      115
Norm, consistency      114 116 127
Norm, Euclidean norm      114
Norm, Frobenius norm      115
Norm, infinity-norm      113—115
Norm, Manhattan norm      114
Norm, matrix norm      114—115
Norm, max norm      114
Norm, normwise relative error      115—117 120 128
Norm, one-norm      113—115
Norm, row-sum norm      115
Norm, triangle inequality      114
Norm, triangle inequality.      113
Norm, two-norm      72 113—114 115n 127—128
Norm, vector norm      113—114
Numerical differentiation, central-difference formula      183
Numerical differentiation, compared with numercial integration      181
Numerical differentiation, error analysis      184—186
Numerical differentiation, forward-difference formula      182 184
Numerical differentiation, second derivative      183
Numerical differentiation, three-point backward-difference formula      184
Numerical integration      41 157
Numerical integration and Lagrange polynomials      161—162
Numerical integration, change of intervals      158
Numerical integration, compared with numerical differentiation      181
Numerical integration, Gauss — Hermite quadrature      177
Numerical integration, Gauss — Laguerre quadrature      176
Numerical integration, Gauss — Legendre quadrature      176
Numerical integration, Gaussian quadrature      qv
Numerical integration, Newton — Cotes formulas      161—162 166 167
Numerical integration, Simpson's rule      qv
Numerical integration, Trapezoidal rule      qv
Numerical integration, treatment of singularities      167—168
Numerical integration, undetermined coefficients      162—163 167 169
Numerical integration, weight function      167 176
Numerical quadrature      157
Operation count      81—82
Operation count, approximation by integrals      81 95
Operation count, Cholesky algorithm      95
Operation count, divided difference      146
Operation count, Gaussian elimination      102
Operation count, Gaussian elimination for Hessenberg matrices      111
Operation count, Gaussian elimination for tridiagonal matrices      111
Operation count, interpretation and caveats      81—82
Operation count, lower triangular system      81
Operation count, synthetic division      142
Order of a matrix      see "Matrix"
Orthogonal function      171
Orthogonal matrix      127
Orthogonal matrix and two-norm      127
Orthogonal matrix, random      129
Orthogonal polynomials      169 171
Orthogonal polynomials, existence      173—174
Orthogonal polynomials, Legendre polynomials      176
Orthogonal polynomials, normalization      172
Orthogonal polynomials, orthogonality to polynomials of lesser degree      172
Orthogonal polynomials, reality of roots      174—175
Orthogonal polynomials, three-term recurrence      174
Outer product      97
Overflow      see "Floating-point arithmetic"
Overwriting      92 93 102
Partitioning      14 90
Partitioning by columns      74
Partitioning, conformity      74
Partitioning, matrix operations      74
Partitioning, paritioned sum      74
Partitioning, partitioned product      74
Partitioning, positive-definite matrix      90
Perturbation analysis      51
Perturbation analysis, linear system      116—117
Perturbation analysis, sum of n numbers      57
Pivoting      see "Gaussian elimination"
Polynomial interpolation      131
Polynomial interpolation at Chebyshev points      151—153
Polynomial interpolation, approximation to the sine      150
Polynomial interpolation, convergence      150—153 161
Polynomial interpolation, error bounds      149—150
Polynomial interpolation, error in interpolant      147—149
Polynomial interpolation, existence      137—138
Polynomial interpolation, extrapolation and interpolation      149—150
Polynomial interpolation, failure of convergence      151 153
Polynomial interpolation, general features      137
Polynomial interpolation, Lagrange interpolation      137—138 141
Polynomial interpolation, linear interpolation      149
Polynomial interpolation, natural basis interpolation      qv
Polynomial interpolation, Newton interpolation      qv
Polynomial interpolation, quadratic interpolation      135—136
Polynomial interpolation, Runge's example      151
Polynomial interpolation, shift of origin      136
Polynomial interpolation, uniqueness      138—139
Polynomial interpolation, Vandermonde matrix      qv
Polynomial, bases      143n 172
Polynomial, evaluation by synthetic division      141—142
Polynomial, monic      172
Polynomial, number of distinct zeros      138
Positive-definite matrix      89
Positive-definite matrix, calculation of inverse      95
Positive-definite matrix, nonsingularity      90
Positive-definite matrix, partitioned      90
Positive-definite matrix, without symmetry requirement      89n
PRECISION      see "Floating-point arithmetic"
PRODUCT      70
Product and transposition      72
Product of partitioned matrices      74
Product of triangular matrices      101
Product, associativity      72
Product, conformity      71
Product, distributivity      72
Product, inner product      72
Product, inverse of      78
Product, matrix      70—71
Product, matrix-vector      71 75
Product, noncommutativity of matrix product      72 74
Product, rank-one matrix and a vector      73
Product, recipe for matrix product      71
Quadratic convergence      14 19—20
Quadratic convergence of Newton's method      14 19
Quadratic convergence, doubling of significant figures      14
Quadratic formula      61—63
Quadratic formula, discriminant      63
Quadratic formula, revised      63
Rank-one matrix      73
Rank-one matrix, computing with      73
Rank-one matrix, storing      73
Rank-one matrix, two-norm of      127
Reciprocal calculated by Newton's method      11
Regression      89
Relative error      7 57 128
Relative error and rounding error      49
Relative error and significant figures      7—8
Relative error as convergence criterion      8
Relative error, normwise      see "Norm"
Relative residual      128
Relative residual and stability of linear systems      128—129
Residual      128
Rounding error      40 47—49
Rounding error and relative error      49
Rounding error in linear systems      120
Rounding error, accumulation      55 58—59 65
Rounding error, adjusted rounding unit      55
Rounding error, cancellation      qv
Rounding error, chopping      48—49
Rounding error, computation of the rounding unit      49
Rounding error, difference equation      63—65
Rounding error, error bounds      48—49 59
Rounding error, error bounds for floating-point operations      50
Rounding error, general observations      65—66
Rounding error, inferiority of chopped arithmetic      58—59
Rounding error, machine epsilon      49
Rounding error, magnification      65
Rounding error, rounding      48
Rounding error, rounding unit      49 120 123
Rounding error, statistical analysis      59
Rounding error, truncation      48
Rounding unit      see "Rounding error"
Rounding-error analysis, accuracy of a sum of positive numbers      58—59
Rounding-error analysis, accuracy of computed sum      58
Rounding-error analysis, backward error analysis      qv
Rounding-error analysis, cancellation      qv
Rounding-error analysis, Cholesky algorithm      98
Rounding-error analysis, difference equation      64—65
Rounding-error analysis, Gaussian elimination      qv
Rounding-error analysis, numerical differentiation      184—186
Rounding-error analysis, simplification of error bounds      54—55
Rounding-error analysis, single error strategy      65
Rounding-error analysis, sum of n numbers      53—55
Rounding-error analysis, sum of two numbers      50—51
Row index      see "Matrix"
Row orientation      83—84 87 98n
Row orientation and level-two BLAS      109
Row orientation, general observations      86
Row vector      see "Vector"
scalar      70
Scalar as $1\times 1$ matrix      69
Scalar, multiplication by      70
Scalar, represented by lower-case Latin or Greek letter      70
Secant method      27 34
Secant method as an interpolatory method      33
Secant method, combined with interval bisection      37—40
Secant method, convergence      21 see
Secant method, failure      34 37
Secant method, geometric derivation      28
Secant method, Newton's method as confluent case      29
Secant method, quasi-Newton method      17
Significant figures and quadratic convergence      14
Significant figures and relative error      7—8
Simple zero      24
Simpson's rule      158
Simpson's rule as a partial Gauss quadrature      169
Simpson's rule, composite rule      165—166
Simpson's rule, derived by undetermined coefficients      162—163
Simpson's rule, error formula      166
Simpson's rule, error in composite rule      167
Simpson's rule, exact for cubics      167 169
Simpson's rule, half-simp rule      166
Singular matrix      123
Spline interpolant      153
Square root, calculated by Newton's method      11
Stable algorithm      41 55 128—129
Stable algorithm, backward error analysis      qv
Stable algorithm, dialogue on stability      55—56
Stable algorithm, Gaussian elimination      125
Stable algorithm, synthetic division      142
Stewart, G.W.      103
Sublinear convergence      20n
Successive substitution method      21
Successive substitution method, convergence      21
Successive substitution method, geometric interpretation      21
SUM      70
Sum and transposition      72
Sum of partitioned matrices      74
Sum, associativity      72
Sum, comformity      70
Sum, commutativity      72
Sum, distributivity      72
Sum, matrix      70
Sum, vector      71
Superlinear convergence      20
Superlinear convergence, not of order p      21n
Superlinear convergence, two-point methods      32
Symmetric matrix, economization of operations      92
Synthetic division      141—142
Synthetic division, evaluation of Newton interpolant      142
Synthetic division, operation count      142
Synthetic division, stability      142
TRANSPOSE      69—70 72
Transpose and matrix operations      72
Transpose, inverse of      78
Trapezoidal rule      158—160
Trapezoidal rule, analytic derivation      159
Trapezoidal rule, composite rule      160 181
Trapezoidal rule, error formula      159—160
Trapezoidal rule, error in the composite rule      160—161
Trapezoidal rule, geometric derivation      158—159
Triangle inequality      see "Norm"
Tridiagonal matrix      111
Tridiagonal matrix and Gaussian elimination      111
Two-point method      28
Two-point method, convergence analysis      29—32
Two-point method, rate of convergence      32
Underflow      see "Floating-point arithmetic"
Vandermonde matrix      137 144
Vandermonde matrix, ill-conditioning      136
Vandermonde matrix, nonsingularity      135 138
Vector      69
Vector as $n\times 1$ matrix      69
Vector supercomputer      109
Vector, column vector      69
Vector, component      69
Vector, dimension      69
Vector, n-vector      69
Vector, represented by lower-case Latin letters      70
Vector, row vector      69 72
Vector, vector operations      see "Multiplication by a scalar" "Sum" "Product" "Transpose"
Virtual memory      83 84 86
Virtual memory, page      83
Virtual memory, page hit      83
Virtual memory, page miss      83—85
Weierstrass approximation theorem      176
Weight function      171
Wilkinson, J.H.      37 110
Zero matrix      see "Matrix"
Zero of a function      9
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте