Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Renardy M. — Mathematical Analysis of Viscoelastic Flows (Classics in Applied Mathematics)
Renardy M. — Mathematical Analysis of Viscoelastic Flows (Classics in Applied Mathematics)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Mathematical Analysis of Viscoelastic Flows (Classics in Applied Mathematics)

Автор: Renardy M.

Аннотация:

The flow behavior of fluids such as molten plastics, biological fluids, and paints is much more varied and complex than that of traditional Newtonian fluids. The role of numerical simulation in the study of such flows has increased tremendously over the past fifteen years, and the phenomena and numerical difficulties in complex flows have led to new and challenging mathematical questions. Studying such flows presents a host of problems, as well as opportunities for mathematical analysis, including questions of asymptotics, qualitative dynamics, and adequacy of numerical methods. Mathematical Analysis of Viscoelastic Flows presents an overview of mathematical problems, methods, and results relating to research on viscoelastic flows.
This monograph is based on a series of lectures presented at the 1999 NSF-CBMS Regional Research Conference on Mathematical Analysis of Viscoelastic Flows. It begins with an introduction to phenomena observed in viscoelastic flows, the formulation of mathematical equations to model such flows, and the behavior of various models in simple flows. It also discusses the asymptotics of the high Weissenberg limit, the analysis of flow instabilities, the equations of viscoelastic flows, jets and filaments and their breakup, as well as several other topics.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1987

Количество страниц: 114

Добавлена в каталог: 27.10.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Balance laws      13
Bifurcation      67—71
Boundary layers      47 51—62
Cauchy strain      16
Center manifold      66
Change of type      75—86
Characteristics      77 79 81 86
Constitutive theories      13—22
Contraction flow      6—8 57 65
Corner singularities      8 47 57—64
Deborah number      see "Weissenberg number"
DEVSS method      45
Die swell      2 57 60
Die swell, delayed      2 85—86
Differential models      14 17 34 38
Drag reduction      5
Dumbbell model      19—22
EEME method      44
Elongational flows      2—6 29—31 65
Euler equations      47—51 59 60
Evolutionary      79
EVSS method      44
Existence theory      33—40
Finite elements      42 43 45
Fokker — Planck equation      20
Frame indifference      16 17 35
Generalized Newtonian fluid      15 83
Giesekus model      17 26 31 53 82 91—94
Hyperbolic equations      36 39 45 77—80 86
Inflow boundary      39—40 82
Instabilities      8 63 65—74 82—84
Integral models      14 16 38 39
Interface, between two fluids      8 65 83
Iteration      35 38 42
Jet breakup      4 87—94
Johnson — Segalman model      17 25 31 81—84
Lagrangian description      87
Linear viscoelasticity      14
Linearization      66 71 80
Lip vortex      8 59
Melt fracture      10 82—84
Molecular theories      2 18—22
Network theory      18
Newtonian fluid      1 13 24 30 47 51 57—59 65 89
Non-Newtonian fluids, examples      1
Nonmonotone shear stress      25 27 82
Normal stresses      1—2 8 24—27 83
Numerical methods      41—46 63
Oldroyd B model      17 60 88
Peterlin approximation      21
Phan-Thien — Tanner model      17 24 31 53 64
potential flow      50 60
Relative deformation gradient      15
Relaxation time      14
Reptation      18
Rod climbing      2
Semigroup, of operators      72
Shear flow, simple      23—27
Shock      86
Spurt      10 82—84
Stochastic simulations      20
Strict hyperbolicity      77 79
Strong ellipticity      35
Symbol, of differential operator      76—80 84
Trouton ratio      30
Tubeless siphon      3
Two-layer flow      8
Upper convected Maxwell model      17 21 24 31 47—55 59—64 84 85
Upwinding      45
Viscometric flows      8 27—29 62 65
Viscometric functions      24—27
Wall slip      82 84
Weissenberg effect      2
Weissenberg number      14 43 44 46—55 60 63
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте