|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Micchelli C.A. — Mathematical Aspects of Geometric Modeling |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Affinely independent points 155
Affinely independent vectors 156 242
Affinely independent vectors, 243
B-patches 227—233
B-patches as B-splines 247—251
B-patches, pyramid schemes and 234—237
B-patches, subdivision by 242—247
B-splines as volumes 149—155
B-splines, degree forward 58
B-splines, B-patches as 247—251
B-splines, basis 123—131
B-splines, basis, dual 215—219
B-splines, basis, variation diminishing property of 143—146
B-splines, bivariate 154—155 156 200 201—202
B-splines, correspondence on historical development 200—204
B-splines, fine knot quadratic 61
B-splines, geometrically continuous 133
B-splines, multivariate, Bernstein — Bezier polynomials and 169—171
B-splines, multivariate, defined 155
B-splines, multivariate, degree-raising formula for 169 171
B-splines, multivariate, multiple points and explicit formula 169—176
B-splines, multivariate, smoothness and recursions 155—169
B-splines, multivariate, square of 171
B-splines, multivariate, truncated power functions and 189—191
B-splines, Polya frequency functions and 203
B-splines, quadratic 59 61
B-splines, Schoenberg’s geometric construction of 150—153
B-splines, series, blossoming, univariate case 215—219
B-splines, sum of products of 171
B-splines, univariate 153 200—201 203—204
Bernstein operator 8—9
Bernstein operator, -splines 106—107
Bernstein — Bezier basis 2
Bernstein — Bezier curve, reparameterization 26 27
Bernstein — Bezier manifold, multivariate, 27
Bernstein — Bezier polynomials, blossoming, univariate case 211 215
Bernstein — Bezier polynomials, dual basis for 214
Bernstein — Bezier polynomials, multivariate of degree n 27
Bernstein — Bezier polynomials, multivariate, B-splines and 169—171
Bernstein — Bezier polynomials, multivariate, on affine space 221
Bernstein — Bezier polynomials, multivariate, recursion 208 210 229—230 232
Bias 106
Binary fractions 7
Binomial theorem 139 140 141
Biorthogonal vectors 183
Bivariate B-splines 154 155 156 200 201—202
Blending functions 115—116
Blossoming, B-spline series, univariate case 215—219
Blossoming, Bernstein — Bezier polynomials, univariate case 211—215
Blossoming, de Casteljau’s triangle for a cubic curve 213
Blossoming, multivariate 219—222
Blossoming, polynomials 211—212
Blossoming, up recurrence formula for quadratic Bernstein — Bezier polynomials 232
Brunn — Minkowski inequality 154
Budan — Fourier lemma 127—128
Cardinal spline functions 58 61
Cauchy — Binet formula 38
Cholesky factorization of matrices 113
Common supporting hyperplane 161
Connection matrices 116—121 123—131
Connects, defined 34
Continuity, Frenet frame 113—115 116—117
Continuity, geometric of order n 110
Continuity, geometric, B-splines 133
Continuity, geometric, reparameterization matrices and 105—110
Continuity, modulus of 14
Control point, control polygon paradigm 1—10
Convergence, de Casteljau algorithm 10
Convergence, de Casteljau subdivision to cubic curves 4
Convergence, matrix subdivision 10—20
Convergence, stationary subdivision 67—83
Convex polyhedrons 160
Corner cutting 3 34—38 40
Correspondence on historical development of B-splines 200—204
Cube splines 192—200
Cubic curves, blossoming de Casteljau’s triangle for 213
Cubic curves, convergence of de Casteljau subdivison to 4
Cubic curves, corner cutting 34 36
Cubic curves, de Casteljau evaluation of 208
Curvature vector for planar curves 106
Curvatures of vectors 112
Curvatures, de Casteljau recurrence formula 207—211
Curvatures, de Casteljau subdivision 1—10
Curvatures, de Casteljau tableau 3
Curvatures, de Rahm — Chaikin algorithm 55—58
Curvatures, Frenet equation and 110—115
Degree raising formula for multivariate B-splines 169—171
Dual basis for B-splines 215—219
Dual basis for Bernstein — Bezier polynomials 214
Dual functionals 135 143
Exceptional point 160
Faa di Bruno formula 109
Frenet equation 110—115
Frenet frame 111—117
Frenet matrices 110—115 117 121—122
General position, sets in 156
Geometric continuity B-splines 133
Geometric continuity B-splines of order n 110
Geometric continuity B-splines, reparameterization matrices and 105—110
Gram matrix of vectors 113
Hermite — Gennochi formula 201
Histogram of vectors 223—224
Hoelder continuous functions 17
Hoelder’s inequality 16—17
Hurwitz matrices 86—87 89—90
Hurwitz polynomials 83—95
Jordan normal form of matrices 246
Knots, fine-knot quadratic B-splines 61
Knots, insertion and variation diminishing property of the B-spline basis 143—146
Knots, insertion for multivariate B-splines 163—166
Knots, insertion, identity for truncated power functions 179—181
Knots, knot regions for bivariate quadratic B-splines 157
Knots, lifting 151
Lagrange polynomials 215
Lane — Riesenfeld subdivision 61—67
Laurent polynomials 68 83 84 95 98 102
Lifting knots 151
Lifting of curves 115—122
Lineal polynomials 219—227
Linear cube spline 194
M-patches 237—242
Mask of stationary subdivision 68
Matrices, Cholesky factorization 113
Matrices, connection 116—121 123—131
Matrices, connects, defined 34
Matrices, Frenet 110—115 117 121—122
Matrices, Gram matrix of vectors 113
Matrices, Hurwitz 86—87 89—90
Matrices, Jordan normal form 246
Matrices, permanent of 28—29
Matrices, permutation 5
Matrices, reparameterization and geometric continuity 105—110
Matrices, reparameterization defined 109
Matrices, reparameterization examples 20—29
Matrices, signum of 30—31
Matrices, stochastic 29—34
Matrices, strictly totally positive 41—43
Matrices, subdivision 6—10
Matrices, totally positive, defined 37
| Matrices, totally positive, product of two totally positive matrices 37—38
Matrices, totally positive, strictly totally positive 41—43
Matrices, totally positive, variation diminishing curves and 38—53
Matrix subdivision (see also “Stationary subdivision”)
Matrix subdivision, convergence criteria 10—20
Matrix subdivision, corner cutting 34—38
Matrix subdivision, de Casteljau subdivision 1 10
Matrix subdivision, example 33
Matrix subdivision, introduced 1
Matrix subdivision, reparameterization examples 20—29
Matrix subdivision, stochastic matrices 29—34
Matrix subdivision, total positiviti and variation diminishing curves 38—53
Modulus of continuity 14
Multiaffine functions 211—212
Multiple points of multivariate B-splines 169—176
Multivariate B-splines, Bernstein — Bezier polynomials and 169—171
Multivariate B-splines, defined 155
Multivariate B-splines, degree-raising formula for 169—171
Multivariate B-splines, multiple points and explicit formula 169—176
Multivariate B-splines, smoothness and recursions 155—169
Multivariate B-splines, square of 171
Multivariate B-splines, truncated power functions and 189—191
Multivariate Bernstein — Bezier manifold, 27
Multivariate Bernstein — Bezier, polynomials, of degree n 27
Multivariate blossoming 219 222
Multivariate partial fraction, decomposition 172 176
Multivariate truncated powers, identities 186—192
Multivariate truncated powers, smoothness and recursion 176—186
One periodic functions 22
Partial fraction decomposition, multivariate 172—176
Patches, B-patches 227—233
Patches, B-patches as B-splines 247—251
Patches, B-patches, pyramid schemes and 234—237
Patches, B-patches, subdivision by 242—247
Patches, M-patches 237—242
Permanent of matrices 28—29
Permutation matrix 5
Piecewise polynomial curves, B-spline basis 123—131
Piecewise polynomial curves, connection matrices and 123—131
Piecewise polynomial curves, curvatures and Frenet equation, Frenet matrices 110—115
Piecewise polynomial curves, diminishing property of the B-spline basis 143—146
Piecewise polynomial curves, dual functionals 135 143
Piecewise polynomial curves, introduced 105
Piecewise polynomial curves, projection and lifting of curves 115—122
Piecewise polynomial curves, reparameterization matrices 105—110
Piecewise polynomial surfaces correspondence on historical, cube splines 192—200
Piecewise polynomial surfaces correspondence on historical, development of B-splines 200—204
Piecewise polynomial surfaces correspondence on historical, geometric methods, B-splines as volumes 149—155
Piecewise polynomial surfaces correspondence on historical, geometric methods, introduced 149
Piecewise polynomial surfaces correspondence on historical, geometric methods, multiple points and explicit formula 169—176
Planar control polygon 2
Point zeros of multiplicity n 124
Polarization (see “Blossoming”)
Polya frequency functions and B-splines 203
Polyhedrons, convex 160
Polynomials (see “Piecewise” “Polynomial “Piecewise “Recursion”)
Polynomials, Bernstein — Bezier (see “Bernstein — Bezier polynomials”)
Polynomials, blossom of 211—212
Polynomials, Hurwitz 83—95
Polynomials, Lagrange 215
Polynomials, Laurent 68 83 84 95 98 102
Polynomials, lineal 219—227
Polynomials, Roth — Hurwitz 88
Polytopes 160
Pre-wavelets 100
Projection of curves 115 122 116
Proper triangle 158
pyramid schemes 234—242
Quadratic B-splines 58 61
Quadratic M-patches 238
Quadratic truncated power 180 187
Recursion, B-patches 227—230
Recursion, Bernstein — Bezier polynomials 208—210 229—230 232
Recursion, blossoming and (see “Blossoming”)
Recursion, de Casteljau 207—211
Recursion, introduced 207
Recursion, M-patches 238
Recursion, multivariate B-splines 155—169 166—169
Recursion, multivariate truncated powers 176 186
Recursion, pyramid schemes 234
Recursion, truncated power functions 181—182
Recursive triangles 209—210
Regular curves 108
Reparameterization matrices and geometric continuity 105—110
Reparameterization matrices, defined 109
Reparameterization matrices, examples 20—29
Reparameterization of the Bernstein — Bezier curve 26—27
Ripplets 96
Rolle’s Theorem 128
Roth — Hurwitz criterion 87
Roth — Hurwitz polynomials 88
Schoenberg operator 64
Schoenberg’s geometric construction of B-splines 150—153
Sets in general position 156
Signum of matrices 30—31
Smoothness, multivariate B-splines 155 169
Smoothness, multivariate truncated powers 176—186
Splines, -splines 106—107
Splines, B-splines (see “B-splines”)
Splines, cardinal spline functions 58 61
Splines, cube splines 192 200
Standard d-simplex 27
Stationary subdivision (see also “Matrix subdivision”)
Stationary subdivision, cardinal spline functions 58—61
Stationary subdivision, convergence 67 83
Stationary subdivision, de Rahm — Chaikin algorithm 55—58
Stationary subdivision, Hurwitz polynomials and 83—95
Stationary subdivision, introduced 55
Stationary subdivision, Lane — Riesenfeld subdivision 61—67
Stationary subdivision, mask 68
Stationary subdivision, symbol 69
Stationary subdivision, wavelet decomposition 96 103
Stochastic matrices 29—34
Strictly totally positive matrices 41 43
Subdivision by B-patches 242—247
Subdivision matrices 6—10
Subdivision operator 68
Subdivision, matrix (see “Matrix subdivision”)
Subdivision, stationary (see “Stationary subdivision”)
Sylvester’s determinantal identity 43
Symbol of stationary subdivision 69
Tension 106
Totally positive matrices, defined 37
Totally positive matrices, product of two totally positive matrices 37—38
Totally positive matrices, strictly totally positive 41—43
Totally positive matrices, variation diminishing curves and 38—53
Truncated powers, multivariate, identities 186—192
Truncated powers, multivariate, smoothness and recursion 176—186
Univariate B-splines 153 200 201 203—204
Variation diminishing curves and total positivity 38—53
Variation diminishing property of the B-spline basis 143—146
Vectors, affinely independent 156 242 243
Vectors, biorthogonal 183
Vectors, curvature of 112
Vectors, curvature, for planar curves 106
Vectors, Gram matrix of 113
Vectors, histogram of 223—224
Wavelet decomposition 96—103
Zero counting convention 124—125
|
|
|
Ðåêëàìà |
|
|
|