Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
John Strikwerda — Finite difference schemes and partial differential equations
John Strikwerda — Finite difference schemes and partial differential equations



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Finite difference schemes and partial differential equations

Автор: John Strikwerda

Аннотация:

This book provides a unified and accessible introduction to the basic theory of finite difference schemes applied to the numerical solution of partial differential equations. Originally published in 1989, its objective remains to clearly present the basic methods necessary to perform finite difference schemes and to understand the theory underlying these schemes. This is one of the few texts in the field to not only present the theory of stability in a rigorous and clear manner but also to discuss the theory of initial-boundary value problems in relation to finite difference schemes. In this updated edition the notion of a stability domain is now included in the definition of stability and is more prevalent throughout the book. The author has also added many new figures and tables to clarify important concepts and illustrate the properties of finite difference schemes.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2

Год издания: 2007

Количество страниц: 450

Добавлена в каталог: 18.10.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Stability for systems of equations      165
Stability of      193
Stability, region      29
Steepest descent method      373
Steepest descent method, implementation      375
Stokes equations      313
Strictly nondissipative schemes      122
Successive-over-relaxation (SOR)      340
Symbol of a differential operator      69 314
Symbol of a finite difference scheme      69
Symbolic calculus      81
symmetric      359
Symmetric matrix      408
Symmetric matrix for elliptic schemes      336
Symmetric positive definite matrices      364
Symmetric successive-over-relaxation (SSOR)      391
Tchebyshev polynomial      389
Thomas algorithm      88 174 177
Time split schemes      170
Tridiagonal systems      88
Truncation error      64
Truncation operator      235
Unitary matrix      401
Upwind differencing      160
Variable coefficients      59 163 205 235 291 315 331
Variable coefficients, effect on well-posedness      222
Von Neumann analysis for first-order equations      47
Von Neumann analysis for second-order equations      193
Von Neumann polynomial      108 109 198
Wave equation      187
Wave equation in two dimensions      202
Wave packet      130 248
Wave packet, frequency of      130
Well-posedness for initial value problem      31 206
Well-posedness for second-order equations      190
Well-posedness, initial-boundary value problem      279
West’s algorithm      368
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте