Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Selvadurai A.P.S. — Partial Differential Equations in Mechanics 1: Fundamentals, Laplace's Equation, Diffusion Equation, Wave Equation
Selvadurai A.P.S. — Partial Differential Equations in Mechanics 1: Fundamentals, Laplace's Equation, Diffusion Equation, Wave Equation



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Partial Differential Equations in Mechanics 1: Fundamentals, Laplace's Equation, Diffusion Equation, Wave Equation

Автор: Selvadurai A.P.S.

Аннотация:

This two-volume work mainly addresses undergraduate and graduate students in the engineering sciences and applied mathematics. Hence it focuses on partial differential equations with a strong emphasis on illustrating important applications in mechanics. The presentation considers the general derivation of partial differential equations and the formulation of consistent boundary and initial conditions required to develop well-posed mathematical statements of problems in mechanics. The worked examples within the text and problem sets at the end of each chapter highlight engineering applications. The mathematical developments include a complete discussion of uniqueness theorems and, where relevant, a discussion of maximum and miniumum principles. The primary aim of these volumes is to guide the student to pose and model engineering problems, in a mathematically correct manner, within the context of the theory of partial differential equations in mechanics.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 1 edition

Год издания: 2000

Количество страниц: 595

Добавлена в каталог: 18.10.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Stretched String, Wave Equation      371
Sturm- Liouville, Boundary Value Problem      307
Sturm- Liouville, Eigenfunction Problem      356
Sturm- Liouville, Generalized Problem      356
Sturm- Liouville, Problems      306
Summation convention      11
Symmetry, Principal Part      144
TbrsionaJ Vibrations, in Bars      513
Tbrsional Wave Motion, in Bars      512
Theorem, definition      13
Theory of residues      35
Thermal Oxidation, in Silicon      250
Time Harmonic Impulsive Force f      410
Torsional Waves, in Circular Elastic Rod      522
traffic flow      87
Transition Condition, Stretched String      451
Translation Theorem, Laplace Transforms      30
Transmission of Waves, at Boundary      386
TVanscendental Equations      322 500
TVanscendental Equations, lYansformatioa of Independent Variables      125
TVanscendental Equations, Robin Boundary Conditions      337
Uniform Fluid Flow, Around Cylinder      225
Uniqueness Theorem, Cauchy Problem      345
Uniqueness Theorem, Heat Conduction      345
Uniqueness Theorem, Laplace’s Equation      214
Uniqueness Theorem, Stretched Membrane      535
Uniqueness theorem, wave equation      531
Uniqueness Theorem, Wave Equation for Stretched Membranes      531
Uniqueness Theorem, Wave Equation for Stretched String      550
Vector field, curl of      7
Vector field, divergence of      6 7
Vector field, Laplacian      6
Vector product      2
Vector, components of      1
Vector, derivative of      3
Vector, Partial Derivatives      4
Velocity potential      163
Vibrating String, Fundamental Frequency      427
Vibration, of Bars      369
Vibration, of Drum Skin      492
Vibration, of Finite String      440
Vibration, of Finite String, Separation of Variables      422
Vibration, of Membranes      389
Vibration, of Rectangular Membrane, Harmonic Loeding      492
Vibration, of Stretched Finite String      418
Vibration, of Stretched Membranes      453
Vibration, of String, Elastic Restraint      434
Vibration, of String, FYee End Boundary      431
Vibration, of String, Natural and Normal Modes      426
Vibration, of String, Variable Boundary Conditions      431
Vibration, of Strings      389
Viscosity, dynamic      253
Viscosity, kinematic      253
Viscous Fluid, Motion of Plates on      252
Vorticity      154 155
Water Waves, in Shallow Depth      525
Wave amplitude      375
Wave equation      369
Wave Equation, Canonical Form      380 421
Wave Equation, Dissipation Effects      452
Wave Equation, D’Alembert’s Solution      378
Wave Equation, Eigenfunction Expansion Solution      495
Wave Equation, Elastically Supported Membrane      512
Wave Equation, Harmonic Waves      374
Wave Equation, One Dimensional Solution      383
Wave Equation, Propagation      377
Wave Equation, Uniqueness of Solution      531 535
Wave Equation, Viscous Effects with Elastic Support      512
Wave length      377
Wave motion      369
Wave Motion, Elastic Solids      512
Wave Motion, Elestically Supported String      446
Wave Motion, Energy Transmission      393
Wave Motion, in Bars, Amplification Factor      516
Wave Motion, in Membranes, Non-Classical Effects      511
Wave Motion, in Membranes, Viscosity Effects      511
Wave Motion, Kinetic Energy in String      393
Wave Motion, Membranes      369
Wave Motion, Potential Energy in String      393
Wave Motion, Solid Bars      369
Wave Motion, Stretched Finite String      415
Wave Motion, Strings      369
Wave Motion, Strings, Fundamental Equation      371
Wave Motion, Viscous Damping      511
Wave Propagation, in Homogeneous String      390
Wave speed      373
Wave Velocity, Longitudinal      515
Waves in Membranes      369
Waves, Boundary Reflection      386
Waves, Boundary Transmission      386
Waves, Incident, Reflected, Transmitted      390
Weighting Function, Sturm — Liouville Approach      306
Well — Posed Problems      77 81
Wind Loading of String      437
Young’s Modulus, Elastic Material      515
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте