Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Lawrence C. Paulson — ML for the working programmer
Lawrence C. Paulson — ML for the working programmer



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: ML for the working programmer

Àâòîð: Lawrence C. Paulson

Àííîòàöèÿ:

The new edition of this successful and established textbook retains its two original intentions of explaining how to program in the ML language, and teaching the fundamentals of functional programming. The major change is the early and prominent coverage of modules, which the author extensively uses throughout. In addition, Paulson has totally rewritten the first chapter to make the book more accessible to students who have no experience of programming languages. The author describes the main features of new Standard Library for the revised version of ML, and gives many new examples, e.g. polynomial arithmetic and new ways of treating priority queues. Finally he has completely updated the references. Dr. Paulson has extensive practical experience of ML, and has stressed its use as a tool for software engineering; the book contains many useful pieces of code, which are freely available (via Internet) from the author. He shows how to use lists, trees, higher-order functions and infinite data structures. He includes many illustrative and practical examples, covering sorting, matrix operations, and polynomial arithmetic. He describes efficient functional implementations of arrays, queues, and priority queues. Larger examples include a general top-down parser, a lambda-calculus reducer and a theorem prover. A chapter is devoted to formal reasoning about functional programs. The combination of careful explanation and practical advice will ensure that this textbook continues to be the preferred text for many courses on ML for students at all levels.


ßçûê: en

Ðóáðèêà: Computer science/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 2 edition

Ãîä èçäàíèÿ: 1996

Êîëè÷åñòâî ñòðàíèö: 496

Äîáàâëåíà â êàòàëîã: 16.10.2010

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
! function      314—318
$\lambda$-calculus      182 372—396
$\nu$-arrays      336—339
() constructor      32
* infix      22 23 303
+ infix      22 23 303
- infix      22 23 303
/ infix      23 303
:: constructor      70—71 77 186
:= infix      314—317
< infix      26
<= infix      27
<> infix      27 (see also “Equality”)
= infix      27 97
=> keyword      133 138 172 463
>= infix      27
>infix      27
@ infix      78—80 82 186
@ infix for sequences      195
@ infix, eliminating      80 111 146
@ infix, proofs about      226—229
AAMP5 microprocessor      256
Aasa, Annika      339
abs function      24
Abstract types      97 115 263—269
Abstract types for proof systems      421
Abstract types, examples of      281—283 327—334
Abstract types, how to declare      268
Abstraction over variables in $\lambda$-calculus      372—374 377 379
Abstraction over variables in logic      407—409
abstype declarations      266—269 281 284 460
abstype declarations, repeated      293
Adams, Stephen      154
ALF system      13
all function      184—185 187
Amortized cost      262
Andalso keyword      27 43 462
Andrews, Peter      446
app function      320
Appel, Andrew      10 15 102 351 371
APPEND      see “@”
Applicative programming      see “Functional programming”
ARITH signature      62—63 86 116
Arithmetic in ML      14 22—24 137 465
Arithmetic in ML, unlimited precision      445—446
Array structure      335
Arrays, flexible      154—159 263 300
Arrays, functional      336—339
Arrays, mutable      154 335—336
AS keyword      132 156 463—464
Assignment commands      see “: =”
Assignments in logic      398
Association lists      101—102 150 287—288 336
Atan function      24
AUTOMATH system      395
Backtracking      see “Search depth-first”
Backus, John      6n 9
Beckert, B.      443
before infix      320
Bevier, William R.      256
Biagioni, Edoardo      10
Binary arithmetic      85—87
Bind exception      137 138
BinIO structure      350
Boehm, Hans      446
Bool structure      340
bool type      26 127
Boolean values      26—27
Boolean values in $\lambda$-calculus      385
Boyer/Moore theorem prover      see “NQTHM”
Braun, W.      155
Bruijn, N.G. de      395
Burge, W.H.      371
C      15—16 274
Call-by-name      44—45 194 200n
Call-by-name in $\lambda$-calculus      375 388—392 395
Call-by-need      8 9 45—48 140
Call-by-value      39—40 43 44 136 140
Call-by-value in $\lambda$-calculus      375 389—393
CAML      12 136
Cardelli, Luca      67
Cartwright, Robert      446
CASE expressions      133 137—140 173 462
CEIL function      24
Char structure      26 341—342
Char type      25—26
Chr exception      137
chr function      25—26 137
Church — Rosser Theorem      374
Church, Alonzo      47 372
Cohn, Avra      256
Combinators      180—182
Comments      20 467
complex numbers      59—61
Composition of functions      see “o”
Computer algebra      114
CONCAT function      74 82
concat function for lists      81 187 190
concat function for sequences      437
Concatenation of lists      see “@”
Concatenation of lists, in $\lambda$-calculus      388 395
Concatenation of sequences      195
Concatenation of strings      25
conditional expressions      26—27 43—44 462
Conditional expressions and exceptions      137 140
Conditional expressions in $\lambda$-calculus      385 391
Conditional expressions, type checking of      64
Conjunctive normal form      167—170 240—242
Cons      see “: : constructor”
Constable, Robert      443
Constructive type theory      13 443
Constructors      125 130—132
Constructors for lists      70
Constructors, hiding      159 265—269
Control structures      317—321
cos function      24
Cousineau, Guy      12
Damas, Luis      67
Datatype bindings      267 461
datatype declarations      124—130 460
datatype declarations with one constructor      159 261
datatype declarations, recursive      142 165 192 194 233
datatype declarations, repeated      128 293
datatype specifications      310
Date structure      15
Davis — Putnam procedure      170 446
Declarations      18—22 53—56 460
Declarations in a structure      60
Declarations of modules      311—312 457—458
Declarations, simultaneous      56—58
Declarative programming      10
Depth function      143 189 232
Dereferencing      see “!”
Dictionary functor      281—283
DICTIONARY signature      149—150 266 281 288
Dijkstra, Edsger      82 93 94 159
Disjoint sum type      129—130
Disjunctive normal form      170
distrib function      see “Conjunctive normal form”
Div exception      137
div infix      22 49 64
Domain exception      137
Domain theory      215 216 233 247 443
DROP FUNCTION      78 82 111 188 424
drop function, proofs about      251—254
dropwhile function      184
Efficiency      9—10 47
Efficiency of recursion      42 76—80
Eight queens problem      208—211
Empty exception      138
Environments      21 39 62 378 393 418
eqtype specifications      266 269 287—288 310 459
EQUAL constructor      127 281 289
Equality      96—107
Equality and abstract types      97 267 268
Equality and functions      97 234—236
Equality of references      316 332—334
Euclid’s algorithm      see “Greatest Common Divisor”
Evaluation      38—48 136
evaluation, lazy      see “Call-by-need”
Evaluation, strict      see “Call-by-value”
exception declarations      135—136 304 460
exception specifications      310 459
Exceptions      134—141 462
Exceptions and commands      320—321
Exceptions, eliminating      151
Exceptions, type checking of      325
exists function      184—185 187
exn type      135—139 141 177 321
Exp function      24
explode function      73
Expressions      462—463
Expressions in programming languages      2—4
fact function      40—42 245
facti function      40—42 47
facti function, proofs about      214 220—222 245 247
facti function, type checking of      64
Factorials      40—43 189 317—319 “facti”)
Factorials in $\lambda$-calculus      388—389 393—395
Fail exception      138
false constructor      26 127
Fibonacci numbers      49—51 191 222—223 329—330
Filter function      182—183 187 209
filter function for sequences      196 206
Fitzgerald, J.S.      256
Fixed point property      389 392
Fixedlnt structure      14
Floor function      24
fn expressions      172—174 178 323 427—428 462
fn expressions and delayed evaluation      193 202 391
foldl function      185—187
foldl function, proofs about      236—237
foldr function      185—187 190 211 409
foldr function, proofs about      237
Formula      398
Formula in ML      408
FORTRAN      2 7 9 127 356
FP      9
from function      193 199
Frost, R.      371
Fully-functorial programming      294—299
fun declarations      19—20 28—31 125—127 460
fun declarations of curried functions      174 182—183
fun declarations, polymorphic      325
Functional languages      9
Functional programming      1—11 38 58
Functional programming and imperative features      327—330 336—339
Functional programming, applications of      10
Functionals      7—8 179—190 409 426—428 “Tactics”)
Functionals and parsing      362—366
Functionals, proofs about      233—237
Functions      6
Functions as arguments      177—178 280
Functions as data      176—177 191—192
Functions with multiple arguments/results      29—32 82 110
Functions, curried      173—178 183—185 209
functions, declaring      see “Fun declarations”
Functions, higher-order      see “Functionals”
Functions, iterative      42—44 49 51 76—78 151 186 247
functions, recursive      6 40—44 48—53 175 317
functor declarations      272 275—277 285—289 312 458
functors      271—299 309
Gansner, Emden      13
Garbage collection      5—6 130 313
Gaussian elimination      90—92
General structure      15
Gerhart, Susan      256
Gordon, Michael J.C.      12 440 443
Grant, P.W.      92
graphs      102—107 278—280
GREATER constructor      127
Greatest common divisor      3 10 48 53 248
Greatest common divisor for polynomials      120—121
Greiner, John      326
HAL      397 407—443
Halfant, Matthew      200
Hamming problem      330
handle keyword      138 462
HARP system      443
Harper, Robert      326
Haskell      9 10 92 102 13In
hd function      74 82 138 176
hd function for sequences      192 327
heaps      see “Priority queues”
Heaps, binomial      164
Hoare, C.A.R.      10 15 69 110 111
HOL system      443
Holmstrom, Soren      336
Hoogerwoord, R.      159
HOPE      12
HTML      348—350
Hudak, Paul      9
Huet, Gerard      12 421
Hughes, John      200 336
Identifiers      21—22 61 465—467
if expressions      see “Conditional expressions”
ignore function      319
Imperative programming      2—5 79 108
Imperative programming in ML      313—340 344—356
ImperativeIO functor      350
implode function      73
include specifications      307—308 310 459
Induction on natural numbers      216—224 244—245
Induction on size      238—245
Induction, structural      224—233 245
Induction, well-founded      238 242—247
infix declarations      460
Infix operators      36—38 283 303 363 462
Infix operators, parsing      364—366 412—414
Input/Output      8 340—356
Instances of polymorphic types      65 176
Instances of signatures      264
Instances of terms/$formul{\ae}$      379 416—420
Int structure      24 340
int type      22—24
inter function      98 183
interleave function      195 202
IntInf structure      14
Io exception      344
Isabelle system      246 421 440 443
it value      19 50 174
iterates function      196 198 331
Keywords of Standard ML      21
Lakatos, Imre      256
LAMBDA system      13
Landin, Peter      12
Launchbury, J.      371
Lazy ML      9
LCF system      11—13 421 440 443
LeanTAP system      443
Left-recursive rules      361 381 412
length function      76—77 82 229
Leroy, Xavier      136
LESS constructor      127
let expressions      53—55 135—137 300—301 318
let expressions and polymorphism      324
Letz, R.      443
Lexical analysis      358—360 368 412
Library      ix 13—15 127 319
Library, arithmetic and      24 303
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå