Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Wilkinson J.H. — The algebraic eigenvalue problem
Wilkinson J.H. — The algebraic eigenvalue problem



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: The algebraic eigenvalue problem

Àâòîð: Wilkinson J.H.

Àííîòàöèÿ:

This volume, which became a classic on first publication, is perhaps the most important and widely read book in the field of numerical analysis. It presents a distillation of the author's pioneering discoveries concerning the computation of matrix eigenvalues. The emphasis is on the transmission of knowledge rather than elaborate proofs. The book will be valued by all practising numerical analysts, students and researchers in the field, engineers, and scientists.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Êîëè÷åñòâî ñòðàíèö: 662

Äîáàâëåíà â êàòàëîã: 09.10.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Laguerre’s method      443—445 478 479 482 484
Laguerre’s method, failure of convergence of      481
Lambda matrices      18—24
Lambda matrices, determinants of      34 432
Lanczos, C., on Lanczos’ method      388 (see also “Rosser J.B.”)
Lanczos’ method      388—394
Lanczos’ method, error analysis of      391—395
Lanczos’ method, need for re-orthogonalization in      391—392
Lanczos’ method, relation to Hessenberg’s method      402—403
Lanczos’ method, symmetric      394—395
latent root      2
Latent vector      3
Le Verrier’s method      434—435
Lotkin, M., on Jacobi-type method      568
Lower-triangular matrix      24
LR algorithm for band matrices, symmetric      553—556
LR algorithm for band matrices, unsymmetric      562
LR algorithm, complex conjugate eigenvalues      494—497
LR algorithm, convergence of      489—493 521—523
LR algorithm, convergence of acceleration of      505—509 511
LR algorithm, cubically convergent version      551—553
LR algorithm, deflation technique associated with      509—510
LR algorithm, positive definite matrices      493—494
LR algorithm, relation of symmetric, with QR      545—546
LR algorithm, symmetric Cholesky      544—547
LR algorithm, tri-diagonal matrices      562—565
Maehly, H.J., on acceleration of Laguerre’s method      484
Maehly, H.J., on acceleration of Newton’s method      480
Magnier, A., on improvement of an eigensystem      547
Mantissa of floating-point number      112
Matrix squaring      615—617
Minimax theorem      99—104
Minimum polynomial of a matrix      37—38
Minimum polynomial of a vector      36—37
Monic polynomial      20
Muller, D.E., on quadratic interpolation      435
Muller’s method      435—438
Muller’s method, accuracy of, for complex zeros      481 483
Muller’s method, accuracy of, for double zeros      458—459
Muller’s method, improved formulation of      484
Murray, F.J.      see “Goldstine H.H.”
Newton’s method      441—443
Newton’s method, comparison with interpolation methods      442—443
Newton’s method, comparison with Laguerre’s method      445
Newton’s method, limitation of root variation with      483
Newton’s method, limiting behaviour of      459—461
Newton’s method, use in connexion with suppression of zeros      475 478
Non-derogatory matrices      13—15
Non-unitary elementary matrices      162—166
Norm of matrix      55—61
Norm of vector      55
Norm, compatible      56
Norm, Euclidean      57
Norm, Schur      57
Norm, spectral      57
Norm, subordinate      56
Normal matrices      51—52
Normal matrices, a posteriori bounds for      170—174
Normal matrices, Jacobi’s method for      486
Normalized vector      3
Ortega, J.M., on error analysis of Householder’s method      297—298 344
Orthogonal matrix      26
Orthogonalization      see “Schmidt orthogonalization.”
Osborne, E.E., iteration for eigenvectors      637
Osborne, E.E., on equilibration      357 411
Ostrowski, A.M., inverse interpolation      439
Ostrowski, A.M., inverse iteration      637
Ostrowski, A.M., on continuity of eigenvalues      63—64
Parlett, B., on use of Laguerre’s method for eigenvalues      479 481 484
Permutation matrices      44
Perturbation theory      62—109
Perturbation theory for linear equations      189—190
Perturbation theory for multiple eigenvalues and linear divisors      75—77
Perturbation theory for non-linear divisors      77—81
Perturbation theory for real symmetric matrices      93—109
Perturbation theory for simple eigenvalues      66—70 72—75
Pivot      200
Pivoting      206
Pivoting, complete      212—213
Pivoting, necessity for      215—216
Pivoting, partial      212—213
Plane rotations      47—48
Plane rotations, fixed-point error analysis      143—151
Plane rotations, floating-point error analysis      131—143
Plane rotations, triangularization by      239—241
Plane rotations, use of in Jacobi’s method      266—269
Pope, D.A., and Tompkins, O., on the threshold Jacobi method      277—278 343.
Positive definite form      28—30
Positive definite matrix      28—30
Positive definite matrix, Cholesky decomposition of      229—233
Positive definite matrix, LR algorithm for      493—494 544
Power method      570—571
Principal vector      42—43
Principal vector, grade of      43
Proper value      3
Proper vector      3
Purification process, Richardson’s      614—615
qd algorithm      564
QR algorithm      515
QR algorithm for symmetric band matrix      557—562
QR algorithm, convergence of      516—521
QR algorithm, cubically convergent form of      548—549
QR algorithm, relation with symmetric LR algorithm      545—546
Quadratic form      27—28
Quasi-symmetric tri-diagonal matrices      335—337
Rational canonical form      15—18
Rayleigh quotient      172—178 595 629
Rayleigh quotient, generalized      179 182
Rayleigh quotient, inverse iteration using      636
Re-orthogonalization in Arnoldi’s method      383—388
Re-orthogonalization in Lanczos’ method      391—395
Refinement of coincident and pathologically close eigenvalues      644—646
Refinement of complex conjugate eigensystem      643—644
Refinement of eigenvalues      637—641
Refinement of eigenvectors      641—642
Refinement, solution of linear equations      255—263
Residual vector in eigenvalue problem      171 639
Residual vector in linear equations problem      248—249 252 255
Residual vector, use in iterative refinement of eigensystem      637—646
Residual vector, use in iterative refinement of solution of linear system      257—261
Richardson’s purification process      614—615
Rollett, J.S., and Wilkinson, J.H., on Givens’ method on machine with two-level store      284—286
Rosser, J.B., Lanczos, C., Hestenes, M.R., and Karush, W., on eigenvectors of tri-diagonal matrices      344
Rosser, J.B., method of Lanczos      412
Rotations      see “Plane rotations”
Rutishauser, H., and Schwarz, H.R., on stratagems for cubic convergence of symmetric LR algorithm      553
Rutishauser, H., on accuracy of cubic convergence of version of LR algorithm      485 487 569
Rutishauser, H., on accuracy of cubic convergence of version of symmetric LR algorithm      550 556 562
Rutishauser, H., on accuracy of eigenvalues in LR algorithm      556
Rutishauser, H., on accuracy of LR algorithm      499—500
Rutishauser, H., on accuracy of width of band matrix      567—568
Schmidt orthogonalization      243—244 383 386 517 607 612
Schoenhage, A., on convergence of Jacobi’s method      270—271 343
Schur norm      57
Schwarz, H.R.      see “Rutishauser H.”
Separation theorem      103—104
Similarity transformation      6
Similarity transformation, elementary      43—47
Singular values      57
Smith’s canonical form      19—24
Spectral norm      57
Spectral radius      59
Square roots, rounding errors in      118
Stabilized elementary matrices      164
Stabilized elementary transformations      469 587
Standardized vector      3
Stiefel, E., on orthogonal polynomials      618 (see also “Engeli M.”)
Sturm sequence property      300 307 344
Sumner, F.H.      see “Brooker R.A.”
Suppression of quadratic factors      475—476
Suppression of zeros      474—475
Suppression, stability of      476—477
SWAC      278
Sylvester’s theorem      496
Taussky, O., on Gerschgorin’s theorems      109
Temple, G., on the Rayleigh quotient      188
Todd, J., on finite segments of the Hilbert matrix      233—234
Tompkins, C.      see “Pope D.A.”
Trapezoidal form      601 602 619
Traub, J.F., on formulation of Muller’s method      484
Treppeniteration      599 602—604
Treppeniteration, example of      610—612
Treppeniteration, using inverse matrix      647
Tri-diagonal matrix      121
Tri-diagonal matrix, deflation of      468
Tri-diagonal matrix, determinants of      423—426
Tri-diagonal matrix, Gaussian elimination of      312—315
Tri-diagonal matrix, inverse iteration with      628
Tri-diagonal matrix, LR algorithm for      562—565
Tri-diagonal matrix, QR algorithm for      565—567
Tri-diagonal matrix, quasi-symmetric      335—337
Tri-diagonal matrix, reduction of Hessenberg matrix to      388—404
Tri-diagonal matrix, symmetric, eigenvalues of      299—315
Tri-diagonal matrix, symmetric, eigenvectors of      315—332
Triangular canonical form      24
Triangular canonical form, reduction to      46—47 50—51 485
Triangular decomposition      201—204
Triangular decomposition, direct      222—223
Triangular decomposition, direct, error analysis of      227
Triangular decomposition, examples of failure and non-uniqueness of      224
Triangular decomposition, relation with Gaussian elimination      223
Triangular decomposition, relation with row interchanges      225—228
Triangularization by elementary Hermitians      233—236
Triangularization by elementary stabilized matrices      236
Triangularization by plane rotations      239—241
Turing, A.M., on rounding errors in matrix processes      264 344
Turnbull, H.W., and Aitken, A.C., on Frobenius canonical form      39
Unitary matrix      26
Unitary matrix, elementary      47—48
Upper triangular matrix      24
Varga, R.S., on iterative methods for solving equations      263
von Neumann, J., and Goldstine, H.H., on inversion of matrices      187 264 344 H.H.”)
Voyevodin, V.V., on an orthogonalization method for the general eigenvalue problem      647
Wasow, W.R.      see “Forsythe G.E.”
White, P.A., on determinants of Hessenberg matrices      430
Wielandt iteration      see “Inverse iteration”
Wielandt, H.W., on deflation      596 599 A.J.”)
Wilkinson, J.H.      see “Rollett J.S.”
Wilkinson, J.H., error analysis of direct methods of matrix inversion      213 218 233 251
Wilkinson, J.H., error analysis of floating-point computation      187
Wilkinson, J.H., error analysis of orthogonal similarity transformations      298 344 594
Wilkinson, J.H., Householder’s method      344
Wilkinson, J.H., Lanczos’ method      412
Wilkinson, J.H., LR algorithm for Hessenberg matrices      569
Wilkinson, J.H., on eigenvectors of tri-diagonal matrices      326
Wilkinson, J.H., quadratic convergence of Jacobi’s method      270 271 343
Wilkinson, J.H., reduction of a general matrix to tri-diagonal form      399—402
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå